Transition Metal-Gallium Ordering in HfCoGa$_2$ and HfNiGa$_2$

Martin Schlüter, Birgit Heying, and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, D-48149 Münster, Germany.

Reprint requests to Prof. Dr. R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 58b, 16 – 21 (2003); received September 16, 2002

The gallides HfCoGa$_2$ and HfNiGa$_2$ were synthesized by arc-melting of the elements and subsequent annealing in glassy carbon crucibles. Their structures have been reinvestigated by X-ray diffraction on powders and single crystals: $I4$ mm, $a = 1222.4(1)$, $c = 812.0(1)$ pm, $wR_2 = 0.0766$, 1464 F^2 values, 64 variables, BASF = 0.41(2) for HfCoGa$_2$ and $a = 1224.0(2)$, $c = 809.3(2)$ pm, $wR_2 = 0.0609$, 1499 F^2 values, 63 variables for HfNiGa$_2$. In contrast to a previous investigation (Dopov. Akad. Nauk Ukr. RSR, Ser. A, 51 (1988)) we observe a fully ordered arrangement of the transition metal and gallium atoms. The crystal chemistry of these gallides is briefly discussed.

Key words: Hafnium, Gallide, Crystal Structure

Introduction

In recent years we have intensively investigated the chemical bonding and physical properties of the family of AET$_2$ (AE = alkaline earth metal, T = transition metal) compounds [1–4, and ref. therein]. These indides crystallize with the MgCuAl$_2$ structure [5], a ternary ordered version of the well known Re$_3$B type [6], or with the CaRhIn$_2$ type [3]. From a topological point of view and based on chemical bonding considerations, these structures can be described as transition metal filled variants of the binary Zintl phase CaIn$_2$ [7].

The alkaline earth atoms in AET$_2$ can also be substituted by rare earth (RE) metal atoms. The series RENiIn$_2$ (RE = Eu, Gd, Tb, Dy) [8,9], RERhIn$_2$ (RE = La—Gd) [10,11], LaPdIn$_2$ [12], and CePdIn$_2$ [13] are isotypic with MgCuAl$_2$. The RENiIn$_2$ compounds with the light rare earth elements crystallize with the PrNiIn$_2$ type structure [14,15] which is an intergrowth variant of the MgCuAl$_2$ type. The different structure is most likely due to the larger size of the early rare earth metals. A different behavior is observed for the nickel and rhodium containing compounds with the heavier rare earth elements. There is a slight deviation from the 1:1:2 composition. These indides crystallize with the tetragonal Ho$_{10}$Ni$_{18}$In$_{20}$ structure [12,16,17]. With palladium as transition metal component the REPdIn$_2$ compounds [12] with the late rare earth metals adopt the tetragonal HfNiGa$_2$ type [18]. The ordering of the nickel and gallium positions in that structure type, however, has not been reported. We have recently refined the TmPdIn$_2$ structure [12] which showed full palladium-indium ordering. In order to compare this structure with the prototype, we reinvestigated the structures of HfNiGa$_2$ and HfCoGa$_2$. The results are reported herein.

Experimental Section

Synthesis

Starting materials for the preparation of HfCoGa$_2$ and HfNiGa$_2$ were hafnium chips (Heraeus), cobalt powder (Merck, 1 µm), nickel powder (Johnson Matthey, 1 µm), and gallium rods (VAW), all with stated purities better than 99.9%. The gallium rods were crushed to small pieces at liquid nitrogen temperature. The three components were subsequently mixed in the ideal 1:1:2 composition and cold-pressed to pellets of 6 mm diameter. The total weight of the samples was around 800 mg. The pellets were then arc-melted [19] under an argon atmosphere of ca. 600 mbar. The argon was purified over molecular sieves, silica gel and titanium sponge (900 K). The resulting buttons were turned around in the water-cooled crucible and melted again in order to achieve homogeneity. The total weight losses after the melting procedures were smaller than 0.5 weight-%. The HfNiGa$_2$ sample was subsequently placed in a glassy carbon crucible (SIGRADUR® G, glassy carbon, type GAZ006) and annealed at ca. 1300 K for 2 h in a water-cooled sample chamber [20] in a high-frequency furnace (Hüttinger Elektronik, Freiburg, Typ TIG 1.5/300). The HfCoGa$_2$ button was also placed in a glassy carbon crucible but further sealed in
Empirical formula	HfCoGa₂	HfNiGa₂
Formula weight	376.86	376.64
Unit cell dimensions	a = 1222.4(1) pm	a = 1224.0(2) pm
c = 812.0(1) pm	c = 809.3(2) pm	
V = 1213.3 nm³	V = 1212.5 nm³	
Calculated density	10.32 g/cm³	10.32 g/cm³
Crystal size	50 × 100 μm³	20 × 60 μm³
Transmission ratio (max/min)	1.32	1.32
Absorption coefficient	70.9 nm⁻¹	71.9 nm⁻¹
F(000)	3220	3240
θ Range for data collection	3° to 35°	2° to 35°
Range in hkl	−19 < h < 17; ±19; −12 < l < 13	±19; ±19; ±13
Total no. of reflections	8763	5800
Independent reflections	1464 (Rstd = 0.0755)	1499 (Rstd = 0.0831)
Reflections with I > 2σ(I)	1439 (Rexp = 0.0340)	1262 (Rexp = 0.0593)
Data / parameters	1464 / 64	1499 / 63
Final R indices [I > 2σ(I)]	R1 = 0.0298	R1 = 0.0365
wR2 = 0.0761	wR2 = 0.0574	
R2 = 0.0766	wR2 = 0.0609	
Extinction coefficient | 0.00071(6) | 0.00056(2)
Flack parameter | −0.02(3) |
BASF | 0.41(2) |
Largest diff. peak and hole | 2.61 and −5.19 e/Å³ | 2.55 and −3.56 e/Å³

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (pm²) of HfCoGa₂ and HfNiGa₂ (space group I4mm).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Wyckoff position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf1</td>
<td>8d</td>
<td>0.28392(4)</td>
<td>0</td>
<td>0.12608(6)</td>
<td>63(1)</td>
</tr>
<tr>
<td>Hf2</td>
<td>8c</td>
<td>0.29907(3)</td>
<td>x</td>
<td>0.13546(6)</td>
<td>62(1)</td>
</tr>
<tr>
<td>Hf3</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>0.0540(1)</td>
<td>76(2)</td>
</tr>
<tr>
<td>Hf4</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>0.5200(1)</td>
<td>118(2)</td>
</tr>
<tr>
<td>Co1</td>
<td>8d</td>
<td>0.2151(2)</td>
<td>0</td>
<td>0.4860(2)</td>
<td>101(3)</td>
</tr>
<tr>
<td>Co2</td>
<td>8c</td>
<td>0.3378(1)</td>
<td>x</td>
<td>0.4818(2)</td>
<td>54(3)</td>
</tr>
<tr>
<td>Co3</td>
<td>4b</td>
<td>0</td>
<td>1/2</td>
<td>0.4005(3)</td>
<td>85(4)</td>
</tr>
<tr>
<td>Ga1</td>
<td>16e</td>
<td>0.35153(8)</td>
<td>0.85892(8)</td>
<td>0.3870(1)</td>
<td>72(2)</td>
</tr>
<tr>
<td>Ga2</td>
<td>8d</td>
<td>0.1637(1)</td>
<td>0</td>
<td>0.7986(2)</td>
<td>72(2)</td>
</tr>
<tr>
<td>Ga3</td>
<td>8d</td>
<td>0.8284(1)</td>
<td>0</td>
<td>0.6501(2)</td>
<td>85(2)</td>
</tr>
<tr>
<td>Ga4</td>
<td>8c</td>
<td>0.36848(8)</td>
<td>x</td>
<td>0.7894(2)</td>
<td>72(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>Wyckoff position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf1</td>
<td>8d</td>
<td>0.28711(5)</td>
<td>0</td>
<td>0.1272(1)</td>
<td>74(1)</td>
</tr>
<tr>
<td>Hf2</td>
<td>8c</td>
<td>0.29617(3)</td>
<td>0</td>
<td>0.1358(1)</td>
<td>76(3)</td>
</tr>
<tr>
<td>Hf3</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>0.0626(2)</td>
<td>79(3)</td>
</tr>
<tr>
<td>Hf4</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>0.5125(2)</td>
<td>86(3)</td>
</tr>
<tr>
<td>Ni1</td>
<td>8d</td>
<td>0.2154(2)</td>
<td>0</td>
<td>0.4847(3)</td>
<td>76(4)</td>
</tr>
<tr>
<td>Ni2</td>
<td>8c</td>
<td>0.3384(1)</td>
<td>x</td>
<td>0.4747(3)</td>
<td>65(4)</td>
</tr>
<tr>
<td>Ni3</td>
<td>4b</td>
<td>0</td>
<td>1/2</td>
<td>0.4001(5)</td>
<td>102(7)</td>
</tr>
<tr>
<td>Ga1</td>
<td>16e</td>
<td>0.3519(1)</td>
<td>0.8585(1)</td>
<td>0.3842(3)</td>
<td>78(2)</td>
</tr>
<tr>
<td>Ga2</td>
<td>8d</td>
<td>0.1609(2)</td>
<td>0</td>
<td>0.7954 (3)</td>
<td>83(3)</td>
</tr>
<tr>
<td>Ga3</td>
<td>8d</td>
<td>0.8285(2)</td>
<td>0</td>
<td>0.6483(3)</td>
<td>101(4)</td>
</tr>
<tr>
<td>Ga4</td>
<td>8c</td>
<td>0.3671(1)</td>
<td>x</td>
<td>0.7884(3)</td>
<td>78(4)</td>
</tr>
</tbody>
</table>

Table 1. Crystal data and structure refinement of HfCoGa₂ and HfNiGa₂ (space group I4mm, Z = 20).

M. Schlüter et al. · HfCoGa₂ and HfNiGa₂

Both samples were characterized through Guinier powder patterns using Cu-Kα₁ radiation and α-quartz (a = 491.30 pm, c = 540.46 pm) as an internal standard. The lattice parameters (Table 1) were obtained from least-squares fits of the powder data. To ensure correct indexing, the patterns were compared with calculated ones [21] taking the atomic positions from the structure refinements. The lattice parameters determined from the powders and the single crystals agreed well. Reasonable agreement is also observed with the lattice parameters determined by Markiv et al. [18]: a = 1223.7(3), c = 808.3(1) pm for HfNiGa₂ and a = 1219.2, c = 814.2 for HfCoGa₂.

Irregularly shaped silvery single crystals of HfNiGa₂ and HfCoGa₂ were selected from the annealed, crushed samples. They were examined by Laue photographs on a Buerger precession camera (Mo radiation) equipped with an image plate system (Fujiﬁlm BAS–1800) in order to establish suitability for intensity data collection. Single crystal intensity data of the HfNiGa₂ crystal have been collected on a four-circle diffractometer (CAD4) with graphite monochromatized Mo-Kα radiation (71.073 pm) and a scintillation counter with pulse height discrimination. The scans were performed in the Ψ/2Ψ mode. An empirical absorption correction was applied on the basis of Ψ-scan data. The HfCoGa₂ crystal was measured on an IPDS–II diffractome.

a silica ampoule and annealed at 1270 K for 7 d in a muffle furnace. Both gallides were obtained in pure form after the annealing procedures. No reaction with glassy carbon was observed. The samples are light gray and stable in moist air. Single crystals exhibit metallic luster.

X-ray investigations

Both samples were characterized through Guinier powder patterns using Cu-Kα₁ radiation and α-quartz (a = 491.30 pm, c = 540.46 pm) as an internal standard. The lattice parameters (Table 1) were obtained from least-squares fits of the powder data. To ensure correct indexing, the patterns were compared with calculated ones [21] taking the atomic positions from the structure refinements. The lattice parameters determined from the powders and the single crystals agreed well. Reasonable agreement is also observed with the lattice parameters determined by Markiv et al. [18]: a = 1223.7(3), c = 808.3(1) pm for HfNiGa₂ and a = 1219.2, c = 814.2 for HfCoGa₂.

Irregularly shaped silvery single crystals of HfNiGa₂ and HfCoGa₂ were selected from the annealed, crushed samples. They were examined by Laue photographs on a Buerger precession camera (Mo radiation) equipped with an image plate system (Fujiﬁlm BAS–1800) in order to establish suitability for intensity data collection. Single crystal intensity data of the HfNiGa₂ crystal have been collected on a four-circle diffractometer (CAD4) with graphite monochromatized Mo-Kα radiation (71.073 pm) and a scintillation counter with pulse height discrimination. The scans were performed in the Ψ/2Ψ mode. An empirical absorption correction was applied on the basis of Ψ-scan data. The HfCoGa₂ crystal was measured on an IPDS–II diffractome.
ter: 60 mm crystal-detector distance, 0 – 180° omega range, \(\Delta \omega = 1° \), 35 min exposure time per image, integration parameters \(A = 12.7 \), \(B = 4.7 \), and EMS = 0.041. All relevant crystallographic data and experimental details for both data collections are listed in Table 1.

Structure refinements

An analysis of the data sets revealed only the systematic extinctions for a body-centered lattice leading to the possible space groups \(\text{I} \bar{4}/mmm \), \(\text{I} \bar{4} \text{mm} \), \(\text{I} \bar{4}2 \text{m} \), and \(\text{I} \bar{4}22 \) of which space group \(\text{I} \bar{4} \text{mm} \) was found to be correct during the structure refinements. The atomic positions of \(\text{TMnIn}_2 \) [12] were taken as starting parameters and both structures were refined using SHELXL -97 (full-matrix least-squares on \(F^2 \)) [22] with anisotropic atomic displacement parameters for all atoms. In a separate series of least-squares cycles we refined the occupancy parameters of the cobalt(nickel) and gallium positions to check for deviations from the ideal composition, especially since cobalt(nickel) and gallium differ only by three and four electrons, respectively. The following ranges were observed: \(99(1)\% \) – \(101(1)\% \) and \(100(1)\% \) – \(104(1)\% \) for the Co and Ga positions in \(\text{HfCoGa}_2 \); \(99(1)\% \) – \(103(1)\% \) and \(98(1)\% \) – \(102(1)\% \) for the Ni and Ga positions in \(\text{HfNiGa}_2 \). Since all sites were fully occupied within four (\(\text{HfCoGa}_2 \)) and three (\(\text{HfNiGa}_2 \)) standard deviations the ideal occupancies were assumed again in the final cycles. Refinement of the Flack parameter [23, 24] indicated the correct absolute structure for \(\text{HfNiGa}_2 \) but twinning by inversion for \(\text{HfCoGa}_2 \). In the final refinement for the cobalt compound the inversion twin matrix was included. Final difference Fourier syntheses revealed no significant residual peaks (Table 1). The positional parameters and interatomic distances are listed in Tables 2 and 3. Listings of the observed and calculated structure factors are available.*

Discussion

The crystal structures of \(\text{HfCoGa}_2 \) and \(\text{HfNiGa}_2 \) have been reinvestigated on the basis of X-ray single crystal diffractometer data. This reinvestigation was stimulated by the recent discovery of the ternary indide \(\text{TmPdIn}_2 \) which adopts the same structure type. In the

*Details may be obtained from: Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), by quoting the Registry No’s. CSD-412752 (\(\text{HfCoGa}_2 \)) and CSD-412753 (\(\text{HfNiGa}_2 \)).
Fig. 1. The crystal structure of HfNiGa2. At the left-hand side a view along the x axis is presented. The relatively complex crystal structure contains the layers A (around \(z = 0 \)) and B (around \(z = 1/2 \)). The layers A and B have the same composition; they are shifted by \(1/2 1/2 1/2 \) (body-centered unit cell). Hafnium, nickel, and gallium atoms are drawn as gray, filled, and open circles, respectively. The \([\text{NiGa}_2]\) network is emphasized.

previous investigation [18], all Ni/Ga sites have been refined with the same mixed occupancy of 40% Ni and 60% Ga. Since the sample of Markiv et al. had the starting composition 0.25 Hf : 0.30 Ni : 0.45 Ga [18], a mixed occupancy could have been expected. As already mentioned by these authors, a homogeneity range \(\text{HfNi}_{1+x} \text{Ga}_{2-x} \) exists.

The result of the present structure refinements is the unambiguous site assignment for the cobalt(nickel) and gallium atoms which is the same as in TmPdIn2 [12]. Refinement of the occupancy parameters of the cobalt(nickel) and gallium positions showed essentially full occupancy. Thus, the compositions of the investigated single crystals are close to the ideal ones. Although we collected intensities up to \(2\theta = 70^\circ \) and the data / parameters ratio is \(> 22 \), the standard deviations of the occupancy parameters are relatively high. This is certainly due to the small difference in scattering power between cobalt(nickel) and gallium atoms (the ratios of the atomic numbers are 27 : 31 and 28 : 31).

The crystal chemistry of HfNiGa2 has already been presented by Markiv et al. [18]. Here we discuss the HfCoGa2 and HfNiGa2 structure briefly with respect to
Fig. 2. Coordination polyhedra in the HfNiGa₂ structure. All neighbors listed in Table 3 are shown. Single-digit numbers correspond to the atom designations. The site symmetries are indicated in parentheses.

the cobalt(nickel) / gallium ordering. Due to the large unit cell and the non-centrosymmetricity, the HfNiGa₂ structure is somewhat complex to present. In Fig. 1 we present a view along the x axis. The structure is composed of two layers A (around \(z = 0 \)) and B (around \(z = 1/2 \)) of the same composition. Due to the body-centering the B layer is formed by shifting the A layer by \(1/2 \ 1/2 \ 1/2 \). These layers are connected via Ni—Ga and Ga—Ga bonds.

The nickel atoms have between five and eight gallium neighbors. The Ga—Ga distances range from 265 to 296 pm. For comparison we look at the structure of elemental gallium [26] where each gallium atom has seven neighbors: one at 248 pm, two at 270, two at 274, and two at 279 pm. The short distance at 248 pm may be considered as a single (two-electron) bond distance, the longer ones as interactions of lower bond order. This is also the case for the various Ga—Ga interactions in HfNiGa₂. Some gallium atoms have additional gallium neighbors at distances longer than 300 pm, i.e. 311 pm (Ga1—Ga2) and 325 pm (Ga4—Ga4). These longer contacts should not be considered as bonding.

The coordination polyhedra are presented in Figure 2. The HfNiGa₂ structure has four crystallographically independent hafnium sites. The hafnium atoms have the highest coordination number, CN 17, as expected from the atomic radius. The Hf—Hf distances range from 355 to 367 pm, much larger than in hcp hafnium (316 pm average Hf—Hf distance). Also the Hf—Ga distances (281 – 332 pm) are longer than the sum of the covalent radii (269 pm). Consequently the Hf—Hf and Hf—Ga contacts may be considered as weak. The shorter Hf—Ni distances (265 – 284 pm) are close to the sum of the covalent radii (262 pm).

Considering the interatomic distances, we can describe the HfNiGa₂ structure by a three-dimensional [NiGa₂] network in which the hafnium atoms fill larger voids. The bonding of the hafnium atoms to this network is based mainly on the Hf—Ni contacts.

Acknowledgments

We thank Dipl.-Ing. Ute Ch. Rodewald and Dr. Rolf-Dieter Hoffmann for the intensity data collections. This work was financially supported by the Fonds der Chemischen Industrie and by the Deutsche Forschungsgemeinschaft.