Conformations and Structures of N,N’-Bis(2-methoxybenzylidene)-
1,3-diamino-propanol and N,N’-Bis(3-methoxybenzylidene)-1,3-
diamino-propanol

Mehmet Kabaka, Ayhan Elmalia, Yalçın Elermana, and Ingrid Svobodab

a Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler-Ankara, Turkey
b Institute of Material Science, Darmstadt University of Technology, Petersenstraße 23, D-64287 Darmstadt, Germany

Reprint requests to Dr. M. Kabak. E-mail: kabak@eng.ankara.edu.tr

Z. Naturforsch. 58b, 1141 – 1146 (2003); received June 2, 2003

N,N’-bis(2-methoxybenzylidene)-1,3-diamino-propanol (C\textsubscript{19}H\textsubscript{22}N\textsubscript{2}O\textsubscript{4}) 1 and N,N’-bis(3-methoxybenzylidene)-1,3-diamino-propanol (C\textsubscript{19}H\textsubscript{22}N\textsubscript{2}O\textsubscript{4}) 2 have been investigated by X-ray analysis and AM1 semi-empirical quantum mechanical method. 1 is in the monoclinic space group C2/c with \(a = 33.694(6), b = 6.735(1), c = 17.681(3) \, \text{Å}, \beta = 114.72(2)^\circ, V = 3645(1) \, \text{Å}^3, Z = 8, D_c = 1.248 \, \text{mg} \, \text{cm}^{-3}\) and \(\mu(\text{Mo-K}\alpha) = 0.088 \, \text{mm}^{-1}\). 2 is in the monoclinic space group C2/c with \(a = 19.173(4), b = 7.626(2), c = 11.788(2) \, \text{Å}, \beta = 91.72(2)^\circ, V = 1722.8(6) \, \text{Å}^3, Z = 4, D_c = 1.320 \, \text{mg} \, \text{cm}^{-3}\) and \(\mu(\text{Mo-K}\alpha) = 0.093 \, \text{mm}^{-1}\). The crystal structures of 1 and 2 were solved by direct methods and refined to \(R = 0.053\) for 1 and \(R = 0.041\) for 2. Both molecules are not planar and 2 has twofold axes on C9 atom. Intramolecular hydrogen bonds occur between O1 and N1 [2.541(3) \, \text{Å}] and between O3 and N2 [2.573(4) \, \text{Å}] atoms for 1 and between O1 and N1 [2.631(2) \, \text{Å}] atoms for 2. The optimized geometries of the crystal structures of 1 and 2 corresponding to non-planar conformation are the most stable conformation in all calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded hydrogen-hydrogen and hydrogen-carbon repulsions.

\textit{Key words:} X-Ray, Schiff Base, AM1, Photochromism, Thermochromism