Investigations in the Systems Ag-Hg-X-O ($X = As^V$, Se^{IV} , Se^{VI}): Hydrothermal Single Crystal Growth of Ag_3AsO_4 , $AgHg^I_2AsO_4$, $AgHg^IIAsO_4$, Ag_2SeO_4 and the Crystal Structure of $Ag_2Hg^{II}(SeO_3)_2$

Matthias Weil

Institute of Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Reprint requests to Dr. M. Weil. E-mail: mweil@mail.zserv.tuwien.ac.at

Z. Naturforsch. **58b**, 1091 – 1096 (2003); received August 4, 2003

Single crystals of the already known phases Ag₃AsO₄, AgHg^I₂AsO₄, AgHg^{II}AsO₄, Ag₂SeO₄ and of the hitherto unknown compound Ag₂Hg^{II}(SeO₃)₂ were obtained under hydrothermal conditions (250 °C, 5 d) from starting mixtures of the metal nitrates and the respective acids. Both Ag₃AsO₄ and AgHg^I₂AsO₄ are isotypic with the corresponding phosphates, Ag₃PO₄ and AgHg^I₂PO₄, whereas AgHg^{II}AsO₄ and Ag₂SeO₄ crystallize in the thenardite (Na₂SO₄ (V)) structure. All crystal structures were refined by means of single crystal X-ray data. The crystal structure of Ag₂Hg^{II}(SeO₃)₂ [Pbca, Z = 8, a = 6.8206(11), b = 11.237(3), c = 16.876(2) Å, 1677 structure factors, 101 parameters, $R[F^2 > 2\sigma(F^2)] = 0.0193$, $wR(F^2 \text{ all}) = 0.0394$] consists of considerably distorted [AgO₆] and $[HgO_6]$ octahedra, and trigonal Se^{IV}O₃ pyramids as the main building units. The $[MO_6]$ octahedra build a complex framework by sharing common edges and corners, and the Se^{IV}O₃ pyramids are located in the vacancies of this arrangement. The average Hg-O distance of 2.399 Å is significantly shorter than the average Ag-O distance of 2.551 Å. The geometries of the two crystallographically independent Se^{IV}O₃ pyramids are very similar and the average distance and angle $(\bar{d}(Se-O) = 1.709 \text{ Å})$, \angle (O-S-O) = 100.1°) lie in the characteristic range for a selenite(IV) group. A short comparative structural discussion between the various compounds obtained during the hydrothermal experiments is given.

Key words: Silver, Mercury, Selenites(IV), Selenates(VI), Arsenates(V)