Zur Kenntnis rhomboedrischer Perowskite (La,Sr)(Mn,Fe)O₃

Contributions to the Chemistry of Rhombohedral Perovskites (La,Sr)(Mn,Fe)O₃

Alexander Börger und Hubert Langbein

Institut für Anorganische Chemie der Technischen Universität Dresden, Mommsenstr. 13, D-01069 Dresden

Sonderdruckanforderungen an Prof. Dr. H. Langbein. Fax: 0351/463 37287. E-mail: hubert.langbein@chemie.tu-dresden.de.

Z. Naturforsch. 58b, 1079-1086 (2003); eingegangen am 9. Juli 2003

Perovskites $La_{1-x}Sr_xMn_{1-x}Fe_xO_{3+\delta}$ (x = 0.1 - 0.5) were prepared by a freeze-drying method and for comparison by conventional solid state reaction. Freeze-dried precursors are more reactive, forming the final perovskites at lower temperatures and within shorter reaction times. Under the reaction conditions employed (air atmosphere, 800 - 1350 °C), the perovskite $La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O_3$ was obtained in an orthorhombic modification. By annealing under oxygen at 800 °C, however, a rhombohedral modification $La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O_{3.1}$ with an excess oxygen content can be prepared. The structures of the other perovskites of the series (x = 0.2 - 0.5) were refined on the assumption of a rhombohedral distortion of the ideal perovskite structure (space group $R\bar{3}c$). There are characteristic correlations between composition of samples, volume and distortion of the AO₁₂- and BO₆-polyhedra in the ABO₃ structure.

Key words: Perovskites (La,Sr)(Mn,Fe)O₃, Freeze-Drying Method, Rietveld Refinement, Polyhedral Analysis