Reactivity of Alkoxyethynyl(trimethyl)silane, -germane and -stannane towards Trialkylboranes. Organometallic-Substituted Enol Ethers

Bernd Wrackmeyera, Sergej V. Gruenerb, and Alla S. Zolotarevab

a Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Germany
b Department of Chemistry, M. V. Lomonosov Moscow State University,
Leninskie Gory, 119992 Moscow, Russia

Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: b.wrack@uni-bayreuth.de

Z. Naturforsch. 58b, 1035 – 1040 (2003); received July 21, 2003

Methoxyethynyl(trimethyl)silane (1\textsubscript{a}) reacts at 100 °C very slowly with triethylborane (4) to give a mixture of alkenes, one of which is the 1,1-organoboration product (Z)-1-methoxy-1-trimethylsilyl-2-diethylboryl-but-1-ene (7\textsubscript{a}). Methoxyethynyl(trimethyl)germane (2\textsubscript{a}) reacts within minutes at 60 – 70 °C with 4, tripropylborane (5) and 9-ethyl-9-borabicyclo[3.3.1]nonane (6) by 1,1-organoboration in the usual regio- and stereospecific way to give the corresponding alkenes (9\textsubscript{a} – 11\textsubscript{a}). The analogous reactions of the ethoxyethynyl(trimethyl)germane (2\textsubscript{b}) require longer heating and are accompanied by decomposition of 2\textsubscript{b}. Ethoxyethynyl(trimethyl)stannane (3\textsubscript{b}) reacts with the trialkylboranes 4 – 6 already below room temperature by 1,1-organoboration to give the alkenes (12\textsubscript{b} – 14\textsubscript{b}) in quantitative yield. The compound 3\textsubscript{b} also reacts with the alkenes, e.g. 9\textsubscript{a}, 13\textsubscript{b}, 14\textsubscript{b}, to give novel organometallic-substituted dienes. All products were characterised by multinuclear magnetic resonance spectroscopy (1H, 11B, 13C, 29Si, and 119Sn NMR).

\textbf{Key words:} Silicon, Germanium, Tin, Enol Ethers, Boranes