Crystal Structure of Eu₂PdSi₃

U. Ch. Rodewald^a, R.-D. Hoffmann^a, R. Pöttgen^a, and E. V. Sampathkumaran^b

- ^a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, D-48149 Münster, Germany
- ^b Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Mumbai 400 005, India

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 58b, 971-974 (2003); received August 19, 2003

Single crystals of Eu₂PdSi₃ were obtained from an arc-melted sample that was further annealed at 1020 K for seven days in a silica tube. The structure of Eu₂PdSi₃ was refined from single crystal X-ray diffractometer data: P6/mmm, a = 831.88(12), c = 435.88(9) pm, wR2 = 0.1175, 265 F^2 values, and 13 variable parameters. It crystallizes with the U₂RuSi₃ structure, a superstructure of the AlB₂ type. The palladium and silicon atoms form a planar two-dimensional [PdSi₃] network. The two crystallographically different europium atoms have hexagonal prismatic coordinations Eu1Si₁₂ and Eu2Pd₄Si₈. The Pd–Si and Si–Si distances within the [PdSi₃] network are 244 and 236 pm, respectively.

Key words: Silicide, Crystal Structure, Solid State Synthesis