Erstmalige Charakterisierung der Ammoniak-Proton-Komplexe $[(NH_3)_3H]^+$ und $[(NH_3)_4H]^+$ in den Kristallstrukturen von $(NH_4)_3AsS_4\cdot 5\ NH_3$ und $(NH_4)_3SbS_4\cdot 8\ NH_3$

First Characterization of the Ammonia-Proton-Complexes $[(NH_3)_3H]^+$ and $[(NH_3)_4H]^+$ in the Crystal Structures of $(NH_4)_3AsS_4 \cdot 5 NH_3$ and $(NH_4)_3SbS_4 \cdot 8 NH_3$

Thomas Roßmeier und Nikolaus Korber

Institut für Anorganische Chemie der Universität Regensburg, D- 93040 Regensburg Sonderdruckanforderungen an Prof. Dr. N. Korber. Fax: 0941/9431812. E-mail: nikolaus.korber@chemie.uni-regensburg.de

Z. Naturforsch. **58b**, 672 – 677 (2003); eingegangen am 16. April, 2003

The compounds (NH₄)₃AsS₄· 5 NH₃ (1) and (NH₄)₃SbS₄· 8 NH₃ (2) were prepared by the reaction of Na₃AsS₄ and Na₃SbS₄ with a proton-charged ion exchange material in liquid ammonia and characterized by low temperature single crystal X-ray structure analysis. The ammonium-ammoniates show H₃N-H···N-hydrogen bonds between the ammonium ion and ammonia molecules ranging from 1.86 to 2.55 Å (DHA-angles: 145 − 173°) and H₃N-H···S-bonds to the thioanions between 2.36 and 2.97 Å (DHA-angles: 130 − 176°). The former of the interactions are responsible for the formation of [(NH₃)₂H]⁺, [(NH₃)₃H]⁺ and [(NH₃)₄H]⁺-complexes, the last two of which were characterized by X-ray analysis for the first time.

Key words: Liquid Ammonia, Hydrogen Bonding, Low-Temperature Crystal Structure Analysis, Ammonium Ion, Solvate Crystal