Molten Gallium as a Non-Reactive Solvent: Synthesis of the Silicides $RE_2Ni_{3+x}Si_{5-x}$ (RE = Sm, Gd and Tb)

Marina A. Zhuravleva and Mercouri G. Kanatzidis Department of Chemistry, Michigan State University, East Lansing, MI, 48824

Reprint requests to Prof. Dr. M. G. Kanatzidis. E-mail: kanatzid@cem.msu.edu

Z. Naturforsch. **58b**, 649–657 (2003); received February 25, 2003

Key words: Flux Synthesis, Magnetism, Mixed Occupancy, Intermetallics

The use of molten Ga as a non-reactive solvent for the synthesis of intermetallic silicides was demonstrated on the family $RE_2Ni_{3+\gamma}Si_{5-\gamma}$ (RE = Sm, Gd and Tb). The structure of $Sm_2Ni_{3+r}Si_{5-r}$ was solved from single crystal X-ray data in the orthorhombic space group Ibam, Z = 4, cell parameters a = 9.6396(12); b = 11.3219(14); and c = 5.6967(13) Å. The refinement based on the full-matrix least-squares on $F_0^2[I > 2\sigma(I)]$ converged to final residuals

type; however, discrepancies exist between the solution obtained for $RE_2Ni_{3+x}Si_{5-x}$ and that reported for U₂Co₃Si₅. The magnetic properties studied on Tb₂Ni_{3+x}Si_{5-x} indicate an antiferromagnetic ordering of magnetic moments centered at Tb ions at 13 K, and Curie-Weiss behavior at high temperatures with the effective moment close to that of free Tb³⁺ ion.

 $R_1/wR_2 = 0.0206/0.0492$. The structure of $RE_2Ni_{3+y}Si_{5-y}$ is related to the $U_2Co_3Si_5$ structure