Synthesis and Crystal Structure of the Germatrane E-N(CH)₂CH₂O₃GeC(Br)=C(Br)Ph

Anastasia A. Selina^a, Sergey S. Karlov^a, Klaus Harms^b, Daniil A. Tyurin^a, Yuri F. Oprunenko^a, Jörg Lorberth^b, and Galina S. Zaitseva^a

 ^a Chemistry Department, Moscow State University, Leninskie Gory, 119899 Moscow, Russia
^b Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg / Lahn, Germany

Reprint requests to Prof. Dr. J. Lorberth or Dr. S. S. Karlov. E-mail: lorberth@staff.uni-marburg.de or sergej@org.chem.msu.su

Z. Naturforsch. **58b**, 613–619 (2003); received January 9, 2003

The reaction of (phenylacetylenyl)triethoxygermane, $(EtO)_3GeC\equiv CPh$ (3), with bromine in $CHCl_3/CCl_4$ solution leads to a mixture of Z- and E- $(EtO)_3GeC(Br)=C(Br)Ph$ (4) in the ratio Z/E = 3/1. Treatment of this product with $N(CH_2CH_2OH)_3$ affords a mixture of Z- and E- $N(CH_2CH_2O)_3GeC(Br)=C(Br)Ph$ (2) in high yield. Compound E-2 was isolated in 16% yield. The molecular composition and the structure of all new compounds have been established by elemental analyses, ¹H and ¹³C NMR spectroscopy. The crystal structure of E-2 is reported. The possible reasons for the different Z/E ratios in the products of the bromination of 3 and $N(CH_2CH_2O)_3GeC\equiv CPh$ (1) are discussed using DFT calculations.

Key words: Germatrane, Bromination, Alkynes, DFT Calculations