Magnetic Properties of Compounds RE_2Cu_2Mg ($RE = Y, La, Pr, Nd$)

Gunter Kotzybaa, Ratikanta Mishrab, and Rainer Pöttgena

a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, D-48149 Münster

b Applied Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai-400 085, India

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 58b, 497 – 500 (2003); received February 12, 2003

The Mo_2FeB_2 type magnesium intermetallics RE_2Cu_2Mg ($RE = Y, La, Pr, Nd$) were synthesized from the elements by reactions in sealed tantalum tubes in a high-frequency furnace. Temperature-dependent magnetic susceptibility measurements of Y_2Cu_2Mg and La_2Cu_2Mg indicate Pauli paramagnetism. Pr_2Cu_2Mg and Nd_2Cu_2Mg show Curie-Weiss behaviour with experimental magnetic moments of $3.67(2) \mu_B$/Pr and $3.47(2) \mu_B$/Nd, respectively. Both compounds are ordered ferromagnetically at Curie temperatures of $12.0(5)$ K (Pr_2Cu_2Mg) and $43.0(5)$ K (Nd_2Cu_2Mg). Pr_2Cu_2Mg shows a very complex magnetization behavior with an additional magnetic transition around 2.5 T. The neodymium compound shows a pronounced square loop behavior in the magnetization at 4.5 K with a high remanent magnetization of $1.55(1) \mu_B$/Nd atom and a coercive field of $0.31(1)$ T.

Key words: Magnesium, Rare Earth Compounds, Magnetism