Crystal Structure and Magnetic Properties of a Dinuclear Iron(III)
Doubly Oxygen Bridged Schiff Base Complex

A. Elmali, Y. Elerman, C. T. Zeyrek, and I. Svoboda

a Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler-Ankara, Turkey
b Turkish Atomic Energy Authority, Ankara Nuclear Research and Training Centre, 06100 Besevler-Ankara, Turkey
c Institute for Material Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany

Reprint requests to Prof. Dr. A. Elmali. E-mail: elmali@eng.ankara.edu.tr

Z. Naturforsch. 58b, 433–437 (2003); received December 4, 2002

[Fe(L)Cl]2 (L = N-(4-methylphenyl)-3-methoxy-salicylaldimine) was synthesized and its crystal structure determined. [C30H26Cl2Fe2N2O6], triclinic, space group P 1, a = 9.278(2), b = 9.4050(10), c = 10.489(2) Å, α = 64.43(2), β = 74.540(10), γ = 62.40(2)°, V = 729.1(2) Å3, Z = 1. Two identical [Fe(L)Cl] fragments, related by an inversion center, are connected by two bridging O atoms to form a binuclear unit. The iron(III) centers are separated by 3.196(2) Å and weakly antiferromagnetically coupled (J = –10.1(1) cm–1), as derived from temperature-dependent magnetic susceptibility measurements in the range 5.1–283.5 K.

Key words: Dinuclear Iron(III) Complex, Super-Exchange Interactions, Antiferromagnetic Coupling