The Effect of High Energy Milling on the Solid State Synthesis of MnFe₂O₄ from Mixtures of MnO-Fe₂O₃ and Mn₃O₄-Fe₂O₃

V. Berbenni^a, A. Marini^a, A. Profumo^b, and L. Cucca^b

- ^a CSGI CNR IENI Dipartimento di Chimica Fisica dell'Università di Pavia Via Taramelli 16, 27100 Pavia, Italy
- ^b Dipartimento di Chimica Generale dell'Università di Pavia Via Taramelli 12, 27100 Pavia, Italy

Reprint requests to Dr. V. Berbenni. Fax: 0039-0382-507575. E-mail: berbenni@matsci.unipv.it

Z. Naturforsch. 58b, 415–422 (2003); received January 30, 2003

A thermal treatment at 900 °C (under nitrogen) of a milled mixture $MnO-Fe_2O_3$ yields $MnFe_2O_4$ mainly as the product of the reaction between Mn_3O_4 (produced by ball milling) and Fe_2O_3 . Under the same experimental conditions but starting from an unmilled $MnO-Fe_2O_3$ mixture, the formation of $MnFe_2O_4$ is only partial and occurs through Mn_3O_4 (formed by oxidation of MnO). The same thermal treatment (900 °C under nitrogen) of a milled $Mn_3O_4-Fe_2O_3$ mixture yields $MnFe_2O_4$ mainly as the product of the reaction between Mn_3O_4 and Mn_2O_3/MnO_2 (the higher Mn oxides being produced by ball milling) and Fe_2O_3 . The effect of high energy milling is more pronounced in the case of the $Mn_3O_4-Fe_2O_3$ system since no $MnFe_2O_4$ formation is observed when starting from a physical mixture.

Key words: Mechanical Activation, Manganese Ferrite, Thermogravimetric Analysis