Einkristalle des Neodym(III)-meta-Borats $\mathrm{Nd}\left(\mathrm{BO}_{2}\right)_{3}$ und -ortho-Borats $\mathrm{Nd}\left[\mathrm{BO}_{3}\right]$

Single Crystals of the Neodymium(III) meta-Borate $\mathrm{Nd}\left(\mathrm{BO}_{2}\right)_{3}$ and ortho-Borate $\mathrm{Nd}\left[\mathrm{BO}_{3}\right]$

Helge Müller-Bunz, Tanja Nikelski und Thomas Schleid

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart
Sonderdruckanforderungen an Prof. Dr. Thomas Schleid. Telefax: +49(0)711/685-4241;
E-mail: schleid@iac.uni-stuttgart.de
Z. Naturforsch. 58b, 375-380 (2003); eingegangen am 13. Dezember 2002

Pale violet, transparent, air- and water-resistant single crystals of the neodymium oxoborates $\mathrm{Nd}\left[\mathrm{BO}_{3}\right]$ and $\mathrm{Nd}\left(\mathrm{BO}_{2}\right)_{3}$ emerged from reactions of $\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{NdF}_{3}$ or NdCl_{3}, and $\mathrm{B}_{2} \mathrm{O}_{3}$ in variable molar ratios during attempts to synthesize neodymium halide borates (e.g. $\mathrm{Nd}_{2} \mathrm{~F}_{3}\left[\mathrm{BO}_{3}\right]$ or $\left.\mathrm{NdCl}\left(\mathrm{BO}_{2}\right)_{2}\right)$. The preparations were carried out at $700^{\circ} \mathrm{C}$ in sealed tantalum capsules using CsCl as a flux, or at $850{ }^{\circ} \mathrm{C}$ in evacuated silica ampoules with an excess of NdCl_{3} as fluxing agent. Neodymium ortho-borate $\lambda-\mathrm{Nd}\left[\mathrm{BO}_{3}\right]$ (orthorhombic, Pnma; $a=573.51$ (5), $b=505.64(4)$, $c=809.16(7) \mathrm{pm} ; Z=4)$ is isotypic with aragonite-type CaCO_{3} containing quasi-planar, discrete $\left[\mathrm{BO}_{3}\right]^{3-}$ triangles $(\mathrm{d}(\mathrm{B}-\mathrm{O})=138 \mathrm{pm}, 3 \times)$ and Nd^{3+} in ninefold oxygen coordination $(\mathrm{d}(\mathrm{Nd}-\mathrm{O})=$ $239-269 \mathrm{pm}, \mathrm{CN}=9)$. In the crystal structure of neodymium meta-borate $\mathrm{Nd}\left(\mathrm{BO}_{2}\right)_{3}\left(\mathrm{NdB}_{3} \mathrm{O}_{6}\right.$; monoclinic, $\left.C 2 / c ; a=983.24(9), b=809.32(7), c=637.71(6) \mathrm{pm}, \beta=126.639(8)^{\circ} ; Z=4\right)$ both $\left[\mathrm{BO}_{3}\right]^{3-}$ triangles $(\mathrm{d}(\mathrm{B}-\mathrm{O})=133-142 \mathrm{pm}, \mathrm{CN}=3)$ and $\left[\mathrm{BO}_{4}\right]^{5-}$ tetrahedra $(\mathrm{d}(\mathrm{B}-\mathrm{O})=145-$ $149 \mathrm{pm}, \mathrm{CN}=4$) are present. They share common corners forming chains of the composition ${ }_{\infty}^{1}\left\{\left(\left[(\mathrm{~B} 1)(\mathrm{O} 1)_{2 / 1}^{\mathrm{e}}(\mathrm{O} 2)_{2 / 1}^{\mathrm{e}}\right]\left[(\mathrm{B} 2)(\mathrm{O} 1)_{1 / 1}^{\mathrm{e}}(\mathrm{O} 2)_{1 / 1}^{\mathrm{e}}(\mathrm{O} 3)_{1 / 1}^{\mathrm{t}}\right]_{2}\right)^{3-}\right\}\left(\equiv{ }_{\infty}^{1}\left\{\left(\mathrm{BO}_{2}\right)^{-}\right\}\right)$which run parallel to the [101] direction and are interconnected by Nd^{3+} cations in tenfold coordination of oxygen atoms $(\mathrm{d}(\mathrm{Nd}-\mathrm{O})=238-280 \mathrm{pm}, \mathrm{CN}=10)$.

