High-Pressure Preparation, Crystal Structure, and Properties of $RE_4B_6O_{15}$ (RE = Dy, Ho) with an Extension of the "Fundamental Building Block"-Descriptors Hubert Huppertz

Reprint requests to Dr. H. Huppertz. E-mail: huh@cup.uni-muenchen.de Z. Naturforsch. **58b**, 278–290 (2003); received February 11, 2003 tus. The single crystal X-ray structure determination of Ho₄B₆O₁₅ revealed the following data: C^2/c , a = 1164.1(1), b = 436.7(1), c = 1882.5(1) pm, $\beta = 96.71(1)^\circ$, Z = 4, $R^2 = 0.0291$, wR2 = 0.0505 (all data). The two isotypic compounds exhibit a new structure type built up from corrugated layers of BO₄ tetrahedra. In contrast to all known oxoborates the linking

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13 (Haus D), D-81377 München, Germany High-pressure/high-temperature conditions of 8 GPa and 1000 °C were used to synthesize the new rare earth oxoborates $RE_4B_6O_{15}$ (RE = Dy, Ho) in a Walker-type multianvil appara-

of the BO₄ tetrahedra is partially realized via common edges. Regarding the "fundamental

building block"-concept, we introduce a new descriptor "™" for edge-sharing BO₄ tetrahedra. Temperature-resolved in situ powder diffraction measurements and IR/Raman-spectroscopic investigations on Dy₄B₆O₁₅ are also reported.

Key words: High-Pressure, Borates, Fundamental Building Block