Rietveld Refinement of the Crystal Structure of α-Be$_3$N$_2$ and the Experimental Determination of Optical Band Gaps for Mg$_3$N$_2$, Ca$_3$N$_2$ and CaMg$_2$N$_2$

Olaf Reckewega, Cora Linda, Arndt Simonb, and Francis J. DiSalvoa

a Baker Laboratory, Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853-1301, USA
b Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart

Reprint requests to Dr. O. Reckeweg or Prof. Dr. F. J. DiSalvo. E-mail: olaf.reykjavik@gmx.de

Z. Naturforsch. 58b, 159 – 162 (2003); received October 15, 2002

α-Be$_3$N$_2$ powder was obtained by reacting Be metal with dry, flowing N$_2$ at 1600 K. The product contained 5.9(7) wt.% of BeO. The anti-bixbyite structure suggested earlier was verified through Rietveld refinement on the basis of X-ray powder data ($Ia\bar{3}$ (#206); $a = 814.518(6)$ pm). The optical band gaps of α-Be$_3$N$_2$, Mg$_3$N$_2$ and Ca$_3$N$_2$ are compared with newly measured values for Mg$_3$N$_2$, Ca$_3$N$_2$ and CaMg$_2$N$_2$.

Key words: Beryllium Nitride, Optical Band Gap, Rietveld Refinement, Structure Elucidation