Rietveld Refinement of the Crystal Structure of α -Be $_3$ N $_2$ and the Experimental Determination of Optical Band Gaps for Mg $_3$ N $_2$, Ca $_3$ N $_2$ and CaMg $_2$ N $_2$

Olaf Reckeweg^a, Cora Lind^a, Arndt Simon^b, and Francis J. DiSalvo^a

^a Baker Laboratory, Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853-1301, USA

b Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart

Reprint requests to Dr. O. Reckeweg or Prof. Dr. F. J. DiSalvo. E-mail: olaf.reykjavik@gmx.de

Z. Naturforsch. **58b**, 159 – 162 (2003); received October 15, 2002

α-Be₂N₂ powder was obtained by reacting Be metal with dry flowing N₂ at 1600 K. The product

 α -Be₃N₂ powder was obtained by reacting Be metal with dry, flowing N₂ at 1600 K. The product contained 5.9(7) wt.% of BeO. The anti-bixbyite structure suggested earlier was verified through Rietveld refinement on the basis of X-ray powder data ($Ia\bar{3}$ (#206); a=814.518(6) pm). The optical band gaps of α -Be₃N₂, Mg₃N₂ and Ca₃N₂ are compared with newly measured values for Mg₃N₂, Ca₃N₂ and CaMg₂N₂.

Key words: Beryllium Nitride, Optical Band Gap, Rietveld Refinement, Structure Elucidation