Hydroboration of Bis(trimethylsilyl)ethyne. New Aspects of Hydroboration

Bernd Wrackmeyer^a, Oleg. L. Tok^a, Wolfgang Milius^a, Moazzam H. Bhatti^{a,b}, and Saqib Ali^{a,b}

^a Laboratorium f
 ür Anorganische Chemie, Universit
 ät Bayreuth, D-95440 Bayreuth, Germany
^b Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan

Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: B.Wrack@uni-bayreuth.de

Z. Naturforsch. 58b, 133-138 (2003); received August 26, 2002

The hydroboration of bis(trimethylsilyl)ethyne, Me₃Si-C \equiv C-SiMe₃ **1**, with 9-borabicyclo [3.3.1] nonane (9-BBN) gives first the expected (*Z*)-alkene **5** which rearranges, without UV irradiation, after several days quantitatively into the (*E*)-alkene **6**. Heating of **6** in the presence of a further equivalent of **1** leads, again almost quantitatively, to an allene, the 1,1,4,4-tetrakis(trimethylsilyl)-4-[9-(9-borabicyclo[3.3.1]nonyl)]buta-1,2-diene **8**. Reactive structures arising from π - σ delocalisation involving the boryl group are proposed to be responsible both for the *cis/trans*-isomerisation and the allene formation. It is suggested that analogous structures may explain the previously observed formation of allenes **9** and **10**, tin-analogues of **8**. The structures of **5**, **6** and **8** in solution follow from a consistent set of NMR data (¹H, ¹¹B, ¹³C, ²⁹Si NMR), and the solid-state structure of **8** was confirmed by X-ray analysis.

Key words: Alkynes, Alkenes, Allenes