2”-Chartreusin-monoacetate, a New Natural Product with Unusual Anisotropy Effects from the Marine Isolate Streptomyces sp. B5525, and its 4”-Isomer*

R. P. Maskey a, K. Pusecker a, M. Speitling a, P. Monecke a, E. Helmke b, and H. Laatsch a

a Department of Organic Chemistry, University of Göttingen, Tammanstrasse 2, D-37077 Göttingen, Germany
b Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven

Reprint requests to Prof. Dr. H. Laatsch. Fax: +49 (0) 551-399 660. E-mail: hlaatsc@gwdg.de

Z. Naturforsch. 57b, 823 – 829 (2002); received April 16, 2002

Chartreusin, Marine Streptomycetes, Anisotropy Effects

The marine Streptomycete isolates B5342 and B5525 forms, beside large amounts of the antitumor antibiotic chartreusin (1a), two chartreusin monoacetates as trace components. Whereas the chemical shift of the acetate methyl in 1c is in the normal range, the methyl group of the 2”-acetate residue in 1b and also in the tetra- and pentaacetates shows an extreme upfield shift. The structures of the monoacetates were confirmed by extensive NMR experiments, the anisotropic shift is explained by semi-empirical calculations.