Spectroscopic Studies on Bis(3,5-di-t-butyl-1,2-benzoquinone 1-oximato)copper(II) and its Mixed-Ligand Complexes.
Copper(II)-Radical Ferromagnetic Coupling

Veli T. Kasumova, Eşref Taşa, Yasin Yakara, Fevzi Köksalb, and Rahmi Köseoğlub

a Chemistry Department, Faculty of Arts and Sciences, Harran University, Sanlıurfa, Turkey
b Physics Department Faculty of Arts and Sciences, Ondokuz Mayıs University Samsun, Turkey

Reprint requests to Prof. Dr. V. T. Kasumov. E-mail: vkasumov@harran.edu.tr

Z. Naturforsch. 57 b, 495–502 (2002); received November 19, 2001

Mixed-Ligand Complexes, Copper(II)-Radical Ferromagnetic Coupling

Bis(3,5-di-t-butyl-1,2-benzoquinone 1-oximato)copper(II), Cu(ox)\textsubscript{2}, and its mixed-ligand complexes, Cu(ox)Lx [Lx = 8-hydroxyquinolinato (L1), N-Phenyl-salicyldimine (L2), N-phenyl-3,5-di-t-butyrsalicyldimino (L3) and N-(2-hydroxyphenyl)-3,5-di-t-butyrsalicyldimino (L4)], were prepared and their spectral behavior as well as redox-reactivity towards PPh\textsubscript{3}, \((m\text{-ClC\textsubscript{6}H\textsubscript{4}})\textsubscript{3}P, (m\text{-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}})\textsubscript{3}P and PPh\textsubscript{2}-(CH\textsubscript{2})\textsubscript{4}\text{-PPh\textsubscript{2}} studied by analytical and spectroscopic (IR, UV-vis, ESR) techniques and magnetic measurements. Cu(ox)\textsubscript{2} and Cu(ox)L\textsubscript{4} complexes prepared in air show \(\mu_\text{eff}\) values of 2.84 and 3.33 \(\mu_\text{B}\), respectively, and are consistent with an S = 1 and S = 3/2 ground states. Both compounds are formulated as copper(II)-radical complex exhibiting intramolecular ferromagnetic coupling between the orthogonal \(d_{x^2-y^2}\) magnetic orbital of the CuII ion and that of the \(\pi\)-radical ligand.