29Si-29Si and 29Si-13C Indirect Nuclear Spin-Spin Coupling, and Isotope-Induced Chemical Shifts 1 Δ12/13C(29Si) and 1 Δ28/29Si(13C), Determined for Silenes Stabilized by Intramolecular N-Si Coordination

Bernd Wrackmeyer a and Hartmut Oehme b

Department of Inorganic Chemistry, University Bayreuth, D-95440 Bayreuth, Germany
Department of Chemistry, University Rostock, D-18051 Rostock, Germany

Reprint requests to Prof. Dr. B. Wrackmeyer, e-mail: B.Wrack@uni-bayreuth.de, or Prof. Dr. H. Oehme

Z. Naturforsch. 56 b, 947–950 (2001); received May 10, 2001

Silicon, Silenes

Two intramolecularly donor-stabilized silenes, 1-(8-dimethylamino-1-naphthyl)-1,2,2-tris(trimethylsilyl)silene (I), and 1-[bis-2,6-(dimethylaminomethyl)phenyl]-1,2,2-tris(trimethylsilyl)silene 2, were studied by 29Si and 13C NMR spectroscopy, using polarization transfer techniques in order to determine coupling constants 2J(29Si, 29Si) (n = 1, 2, 3) and 1J(29Si, 13C) together with isotope-induced chemical shifts 1 Δ12/13C(29Si) and 1 Δ28/29Si(13C).