Crystal Structure and Magnetic Properties of a Binuclear Copper(II) Complex Bridged by an Alkoxo-oxygen Atom and an Acetate Ion

C. T. Zeyreka, A. Elmalia,*, Y. Elermana,*, I. Svobodab, and H. Fuessb

a Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler-Ankara, Turkey
b Institut for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany

* Alexander von Humboldt Fellow

Reprint requests to Dr. A. Elmali. E-mail: elmali@science.ankara.edu.tr

Z. Naturforsch. 55 b, 1067–1073 (2000); received August 4, 2000

Dinuclear Copper(II) Complex, Super-exchange Interactions, Antiferromagnetic Coupling

$[\text{Cu}_4(\text{L})_2(\text{O}_2\text{CMe})_2]\cdot\text{H}_2\text{O}$ ($\text{L} = 1,3$-bis(5-bromo-2-hydroxybenzylidene)propan-2-ol) was synthesized and its crystal structure determined. ($C_{38}H_{34}N_4O_{10}Br_4Cu_4$ H\textsubscript{2}O, monoclinic, space group $P2_1/c$, $a = 21.072(5)$, $b = 9.673(2)$, $c = 21.934(4)$ Å, $\beta = 109.73(2)^\circ$, $V = 4208(2)$ Å3, $Z = 4$. The crystal structure consists of two independent binuclear copper(II) complexes and the non-coordinating water molecule in the asymmetric unit. The Cu(II) ions are in a square-planar geometry and coordinated by donor atoms of the ligand (NO$_3$).

The average Cu···Cu distance and average Cu-O-Cu angle are 3.491(2) Å and 132.0(1)$^\circ$, respectively. Temperature-dependent magnetic susceptibility measurements of the complex show an intramolecular antiferromagnetic coupling in the dimeric Cu(II) core. The fitting parameters are $-2J = 174.4$ cm$^{-1}$, $g = 1.98$.