Reaktionen der Lithiumhydridosilylamide $\text{Me}_2(\text{H})\text{Si-N(Li)}\text{R}$ (R = CMe₃, SiMe₃) mit Chlortrimethylstannan und Chlormethylsilanen $\text{Me}_{4-n}\text{SiCl}_n$ ($n = 1 - 3$)

Reactions of Lithium Hydridosilylamides $\text{Me}_2(\text{H})\text{Si-N(Li)}\text{R}$ (R = CMe₃, SiMe₃) with Chlorotrimethylstannane and Chlormethylsilanes $\text{Me}_{4-n}\text{SiCl}_n$ ($n = 1 - 3$)

Jan Schneider, Eckhard Popowski und Normen Peulecke

Fachbereich Chemie der Universität Rostock, Buchbinderstr. 9, D-18051 Rostock, Germany

Sonderdruckanforderungen an Prof. Dr. E. Popowski.
E-mail: eckhard.popowski@chemie.uni-rostock.de

Hydridosilylamides, Cyclodisilazanes, Hydrogen-Chlorine-Exchange

The under reflux conditions in n-octane stable lithium hydridosilylamides $\text{Me}_2(\text{H})\text{Si-N(Li)}\text{R}$ (1: R = CMe₃, 2: SiMe₃) were allowed to react with chlorotrimethylstannane and chlormethylsilanes $\text{Me}_{4-n}\text{SiCl}_n$ ($n = 1 - 3$) in different molar ratios.

1 reacts with Me_3SnCl in n-pentane to give the cyclodisilazane $[\text{Me}_2\text{Si-NCMe}_3]_2$ (3) and Me_3SnH. The reaction of 2 with Me_3SnCl under the same conditions leads to a mixture of $\text{Me}_2(\text{H})\text{Si-N(SnMe}_3\text{)}\text{SiMe}_3$ (5), $[\text{Me}_2\text{Si-NSiMe}_3]_2$ (4), and to Me_3SnH. In the reactions of 1 and 2 with chlorotrimethylstannane in tetrahydrofuran the corresponding N-stannylation products $\text{Me}_2(\text{H})\text{Si-N(SnMe}_3\text{)}\text{R}$ 5, 6 and very small amounts of ($\text{Me}_3\text{Sn})_2$ are formed.

The results of the reactions of 1 and 2 with Me_2SiCl_2 and of 1 with MeSiCl_3 in n-hexane show that hydrogen-chlorine-exchange proceeds between the reactants. With Me_2SiCl_2 the corresponding cyclodisilazanes $[\text{Me}_2\text{Si-NR}]_2$ 3, 4, N-silylation products $\text{Me}_2(\text{H})\text{Si-N(SiMe}_2\text{Cl)}\text{R}$ 7b, 8b, and $\text{Me}_2(\text{H})\text{Si-N(SiMe}_2\text{H)}\text{R}$ 7c, 8c, and the silanes Me_2SiHCl and Me_2SiH_2 are formed, the cyclodisilazanes being the main products. 1 and MeSiCl_3 produce 3, $\text{Me}_2(\text{H})\text{Si-N(R')}\text{CMe}_3$ (7d: R' = SiMeCl₂, 7e: R' = SiMeCH₂, 7f: R' = SiMeH₂) and MeSiH_3. In comparison with the reaction of 1 with Me_2SiCl_2 the yield of cyclodisilazane is smaller and that of N-silylated compounds is higher. The reaction behaviour of 1 towards Me_2SiCl_2 and MeSiCl_3 in THF is comparable to that in n-hexane.

No silanimine intermediates are observed in the reactions of 1 or 2 with the chlormethylsilanes $\text{Me}_{4-n}\text{SiCl}_n$ ($n = 1 - 3$) in the molar ratios 1:5 and 1:10.