Schiff Bases of Methanesulfonylhydrazine. Synthesis, Spectroscopic Characterization, Conformational Analysis, and Biological Activity

Nicolay I. Dodoffa, Ümmüahan Özdemirb, Nurcan Karacanb, Milka Ch. Georgievac, Spiro M. Konstantinovd, and Miglena E. Stefanovae

a Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
b Department of Chemistry, Faculty of Science and Art, Gazi University, Teknikokullar, 06500 Ankara, Turkey
c Laboratory of Oncogenesis, National Oncological Center, 6 Plovdivsko Pole Street, 1756 Sofia, Bulgaria
d Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
e Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria

Reprint requests to Dr. N. I. Dodoff. E-mail: dodoff@bas.bg

Z. Naturforsch. 54b, 1553–1562 (1999); received July 31, 1999

Schiff Bases, Methanesulfonylhydrazine, 1H NMR Data, Molecular Mechanics, Cytotoxic Activity

Three novel Schiff bases: salicylaldehyde methanesulfonylhydrazone (1), 2-hydroxyacetophenone methanesulfonylhydrazone (2) and 2-hydroxy-1-naphthaldehyde methanesulfonylhydrazone (3) have been synthesized. Compounds 1-3, as well as acetone methanesulfonylhydrazone (4) have been characterized by TLC, 1H NMR and IR spectra. The spectroscopic results for 1-3 have revealed the presence of an intramolecular hydrogen bond between the hydroxyl group and the imine N atom. The conformational isomerism of 1-4 with respect to the rotations around the SN and NN bonds have been studied by the method of molecular mechanics. Compounds 1-4 and methanesulfonylhydrazine exhibit antibacterial and cytotoxic effects.