Chiral Pool Synthesis of 4a-Substituted Carbocyclic Cyclopentanoid Nucleoside Precursors, I

René Csuk*,a, Petra Dörr b, Martin Kühnb, Claus Kriegerc, and Mikhael Y. Antipind

a Institut für Organ. Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany

b Pharmazeutisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany

c Max-Planck-Institut für Medizinische Forschung, Jahn-Straße 29, D-69120 Heidelberg, Germany

d Institute of Organoelement Compounds, Russian Academy of Science, Vavilow St. 28 B-334, Moscow 117813, Russia

* Reprint requests to Prof. Dr. R. Csuk. E-mail: csuk@chemie.uni-halle.de

Z. Naturforsch. 54b, 1068–1078 (1999); received May 21, 1999

Nucleosides, Carbohydrates, X-Ray Data

A suitable protected D-ribono-1,4-lactone derivative has been used for the straightforward chiral pool synthesis of cyclopentanoid nucleoside precursors. Thus, epoxidation followed by deoxygenation or regioselective ring opening led to nucleoside precursors modified at the positions C(4), C(4a) and C(4,4a) as well as side-chain modified derivatives. The structures of the key intermediates were determined by X-ray analyses.