Neue Tetraaminophosphonium-Salze durch Anionenaustausch in flüssigem Ammoniak

Novel Tetraaminophosphonium Salts by Anion Exchange in Liquid Ammonia

Kai Landskron, Stefan Horstmann und Wolfgang Schnick*

Institut für Anorganische Chemie der Ludwig-Maximilians-Universität, Butenandtstr. 5-13 (Haus D), D-81377 München

* Sonderdruckanforderungen an Prof. Dr. W. Schnick. E-mail: wsc@cup.uni-muenchen.de

Z. Naturforsch. 54 b, 1019–1026 (1999); eingegangen am 12. April 1999

Phosphorus, Ion Exchange, Liquid Ammonia, Crystal Structure

[P(NH₂)₄]Br and [P(NH₂)₄][NO₃] have been prepared by anion exchange in liquid ammonia. Single crystals of [P(NH₂)₄]Br were obtained from an acetonitrile solution in a temperature gradient between 60 °C and room temperature while attempts to grow single crystals of [P(NH₂)₄][NO₃] yielded [P(NH₂)₄][NO₃](OP(NH₂)₃). Both crystal structures were determined by single crystal X-ray methods at room temperature ([P(NH₂)₄]Br: P4/nbm, \(a = 809.2(1) \), \(c = 468.1(1) \) pm, \(Z = 2 \), \(R_1 = 0.042 \), \(wR_2 = 0.077 \); [P(NH₂)₄][NO₃](OP(NH₂)₃): Pna2₁, \(Z = 4 \), \(a = 1023.4(1) \), \(b = 1704.7(1) \), \(c = 618.0(1) \) pm, \(R_1 = 0.025 \), \(wR_2 = 0.067 \). In the solid [P(NH₂)₄]Br forms a tetragonally distorted variant of the CsCl type of structure. [P(NH₂)₄][NO₃](OP(NH₂)₃) consists of \([P(NH₂)₄]⁺\) cations, \([NO₃]⁻\) anions, and OP(NH₂)₃ molecules which are interconnected by a complex system of hydrogen bonds.