Low Temperature Crystal Growth and Structure of Ordered Ba₇F₁₂Cl₂

F. Kubel^a, H. Bill^b, H. Hagemann^b

Gel Method

^a Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, Getreidemarkt 9, Wien

Wiell, Getteldellarkt 9, Wiell
 Dépt. de Chimie Physique, Univ. de Genève, 30, quai Ernest-Ansermet,
 CH 1211 Geneva 4, Switzerland

Z. Naturforsch. **54b**, 515–518 (1999); received November 30, 1998

Bariumfluorochloride, Hexagonal Crystal Structure, Crystal Growth, Low Temperature

Crystals of composition $Ba_7F_{12}Cl_2$ were obtained by a reaction at room temperature between $Ba^{2+}/Cl^-/F^-$ in a gel of agar-agar/water. The hexagonal crystals have space group P6, a=1064.69(8), c=417.89(5)pm, V=410.24(8) 10^6 pm³ and Z=1. The anions form a propeller type network located in tunnels parallel to the c_{hex} axis; the chloride ions are located at the center on the propeller axes. The Ba^{2+} ions are coordinated by a (distorted) tricapped trigonal environment of fluoride and chloride anions. Disorder is present for one particular Ba^{2+} site. The average structure is isotypic with the structure of $Pb_7F_{12}Cl_2$.

* Reprint requests to Prof. H. Bill.