Structure of a Cs(18-crown-6)N(CN)$_2$·H$_2$O Complex:
Assembly of the Dimeric 2:2 Anion Paired Encapsulate by Means of μ^2-Bridging Water Molecules

Julia A. Rusanovaa,*, Philip J. Squatritob, Konstantin V. Domasevitcha, Volodimir N. Kokozaya

a Department of Inorganic Chemistry, Kiev University,
 Volodimirskaya St. 64, Kiev 252033, Ukraine
b Department of Chemistry, Central Michigan University, Mt. Pleasant, MI 48859, USA

Z. Naturforsch. 54 b, 389–393 (1999); received October 23, 1998

18-Crown-6, Caesium Macrocyclic Complexes, Dicyanamide, Crystal Structure

The new macrocyclic complex of composition Cs(18-crown-6)N(CN)$_2$·H$_2$O has been prepared and characterized by X-ray crystallography (monoclinic, space group P2$_1$/n, with $a = 11.218(3)$, $b = 8.563(7)$, $c = 21.704(2)$ Å; $\beta = 92.66(1)^\circ$, $V = 2083(2)$ Å3, $Z = 4$; final $R = 0.034$ and $R_w = 0.038$ for 2529 independent reflections with $I > 3\sigma(I)$). The complex adopts a molecular dimeric array [Cs(18c6)(μ^2-H$_2$O){N(CN)$_2$}]$_2$(2:2 anion-paired encapsulate). The dimerization of Cs(18c6)$^+$ moieties takes place surprisingly not via the nitrilic nitrogen atoms, but via the water molecules (Cs-O 3.139(5), 3.334(5) Å), which is an unprecedented example in the chemistry of M(18c6)$^+$ complexes. The caesium atom adopts nine-fold coordination (Cs-O (ether) 3.099(5) - 3.280(5) Å). One cyano group of the counter anion completes the coordination environment of the caesium atom (Cs-N 3.420(8) Å), while the second one is involved in hydrogen bonding.

* Reprint requests to J. A. Rusanova. Fax: +380 44 296