Di- to Pentahydrates of Five Alkylenediamines. A Case Study of One- and Two-Dimensional Water Polymers in Solids [1]
Stephanie Janeda*, Dietrich Mootz**
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf

Herrn Professor Bernt Krebs zum 60. Geburtstag gewidmet

Z. Naturforsch. 54 b, 103–108 (1999); eingegangen am 7. September 1998

Amine Hydrates, Hydrates, Melting Diagram, Water Polymers, Hydrogen Bonding

The crystal structures of five low-melting hydrates of \(n \)-alkane-\(\alpha,\omega \)-diamines, \(\text{H}_2\text{N(CH}_2\text{)}_n\text{NH}_2 \cdot x \text{H}_2\text{O} \), for short \(\text{C}_n \cdot x \text{W} \), have been determined. As a common feature, the water molecules are mutually linked by hydrogen bonds \(\text{O-H-}\cdot\cdot\cdot\text{O} \) to form low-dimensional polymers. These are a meandering chain in \(\text{C}_2 \cdot 2 \text{W} \) (space group \(\text{I}2\text{I/a} \), \(Z = 4 \) formula units per unit cell), a zig zag chain in \(\text{C}_6 \cdot 2 \text{W} \) (\(\text{P}2_1\text{c} , Z = 2 \)), a ribbon of consecutively condensed five-membered rings in \(\text{C}_3 \cdot 3 \text{W} \) (\(\text{P}2_1\text{c} , Z = 4 \)) and a layer of condensed and spiro-linked rings of varying size each in \(\text{C}_7 \cdot 3 \text{W} \) (\(\text{P}1\text{, Z = 4} \)) and \(\text{C}_4 \cdot 5 \text{W} \) (\(\text{C}2\text{c} , Z = 4 \)). Further hydrogen bonding, between the water polymers and the bifunctional amine molecules, leads to overall connectivities which are three-dimensional in each structure.

Sonderdruckanforderungen an Prof. Dr. D. Mootz.