Pentacoordinated Nitrogen Atoms in the Structure of Hexalithium Bis[methylsilyl-tris(methylimide)] Hexakis(tetrahydrofuran)

Gerald Huber, Alexander Jockisch, Hubert Schmidbaur*

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Z. Naturforsch. 54 b, 8–12 (1999); received September 1, 1998

Silylamines, Silylamides, Crystal Structure

Lithiation of tris(methylamino)methylsilane using an excess of \( n \)-butyllithium affords the corresponding trifunctional lithium amide in high yield. The compound crystallizes from tetrahydrofuran as a dimer with six donor molecules: \([\text{MeSi(NMeLi)}_3]_2(\text{thf})_6\). The cluster is a cage structure grouped around a crystallographic center of inversion. The silicon and lithium atoms are tetrahedrally tetracoordinated, but the nitrogen atoms are pentacoordinated and have a square pyramidal environment of one carbon, one silicon, and three lithium atoms. Parallels can be drawn to other species with polymetallated nitrogen functions. An analogous compound was prepared from tris(methylamino)vinylsilane.

* Reprint requests to Prof. Dr. H. Schmidbaur.