Theoretical and Experimental Investigations on the Protonation of Substituted closo-Hexaborates – \([B_6H_5H^{\text{fac}}F]^-\) and \([B_6H_5H^{\text{fac}}CH_3]^-\)

B. Steuer, G. Peters, W. Preetz*

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstraße 40, D-24098 Kiel

Fluoro-hexahydro-closo-hexaborate(1-), Methyl-hexahydro-closo-hexaborate(1-), Protonation, NMR Data, Vibrational Spectra

The structural parameters and energies of the protonated compounds closo-\([B_6H_5H^{\text{fac}}F]^-\) and closo-\([B_6H_5H^{\text{fac}}CH_3]^-\) are calculated by MP2/6-31G* optimization, as have the 1H, 11B, 13C and 19F NMR shifts using a tzp basis set and the RHF/GIAO method. The results for the octahedral molecule anions confirm the preferred localization of the additional proton in \([B_6H_5H^{\text{fac}}X]^-\) in case of $X = CH_3$ at the upper square pyramid topped by the ipso-boron atom, and in case of $X = F$ at the lower one topped by the antipodal boron atom. The calculated NMR shifts are in good agreement with experimental data (this work). The higher BH frequencies observed for the protonated compounds as compared to the deprotonated parent clusters could be verified by ab initio frequency analyses.

* Sonderdruckanforderungen an Prof. Dr. W. Preetz.