Kristallstruktur von (Ph₃PNH₂)₄[Sb₆O₁₀Cl₁₄]·2CH₃CN

Crystal Structure of $(Ph_3PNH_2)_4[Sb_6O_{10}Cl_{14}] \cdot 2 CH_3CN$

Dieter Fenske

Institut für Anorganische Chemie der Universität Karlsruhe, Engesserstraße, D-76128 Karlsruhe

Ralf Garbe, Kurt Dehnicke*

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg/Lahn

Z. Naturforsch. **49b**, 983–986 (1994); eingegangen am 9. März 1994

Hexameric Oxo-chloro-antimonate(V), Crystal Structure

The title compound has been obtained by the reaction of the phosphoraneiminato complex Cl₂Sb(NPPh₃) with chlorine, followed by partial hydrolysis in acetonitrile. The colourless crystals were characterized by a crystal structure determination. Space group $P\overline{1}$, Z = 2, structure refinement with 8320 observed unique reflections, R = 0.063 with I > $2\sigma(I)$. Lattice dimensions at -70 °C: a = 1245.0(6); b = 1277.7(8), c = 1623.8(9)pm, $\alpha = 77.97(2)^\circ$, $\beta = 86.52(2)^\circ$, $\gamma = 67.07(2)^\circ$. The compound consists of Ph₃PNH₂⁺ ions, $[Sb_6O_{10}Cl_{14}]^{4-}$ ions, in which the central unit is a Sb₄O₆ skeleton with a double heterocubane-like arrangement with two missing corners, and of included acetonitrile molecules without bonding interactions.

Wir gelangten zu Einkristallen der Titelverbindung bei Versuchen zur Oxidation des unlängst beschriebenen Phosphaniminatokomplexes $Cl_2Sb(NPPh_3)$ [1] mit elementarem Chlor in Tetrachlorkohlenstoff, wobei die Bildung des entsprechenden Antimon(V)derivates Cl₄Sb(NPPh₃) angestrebt wurde. Die Kristallisationsversuche des weißen, feuchtigkeitsempfindlichen Reaktionsproduktes aus Acetonitril gestalteten sich langwierig. Von den schließlich entstandenen farblosen Einkristallen wurde eine Röntgenstrukturanalyse angefertigt, die Aufschluß über das Vorliegen des Komplexes $(Ph_3PNH_2)_4[Sb_6O_{10}Cl_{14}] \cdot 2CH_3CN$ gab. Die Verbindung ist mithin durch partielle Hydrolyse entstanden. Der ungewöhnliche clusterähnliche Aufbau des [Sb₆O₁₀Cl₁₄]⁴⁻-Ions verTab. I. Kristalldaten und Angaben zur Kristallstrukturbestimmung von (Ph₃PNH₂)₄[Sb₆O₁₀Cl₁₄]·2CH₃CN.

Gitterkonstanten	a = 1245,0(6) pm
	$b = \frac{12}{7}, \frac{1}{8}$ pm
	c = 1623,8(9) pm
	$a = 77.97(2)^{2}$
	$\beta = 80,52(2)^{\circ}$
2 11 1	$\gamma = 6/, 0/(2)^{\circ}$
Zellvolumen	$V = 2326(2) A^3$
Zahl der Formel-	7
einheiten pro Zelle	Z = 2
Dichte (berechnet)	$\varrho = 1,843 \text{ g/cm}^3$
Kristallsystem,	-
Raumgruppe	triklin, P1
Meßgerät	STOE-IPDS-Flächendetektor
Strahlung	ΜοΚα
-	(Graphit-Monochromator)
Meßtemperatur	-70°C
Zahl der Reflexe zur	
Gitterkonstanten-	
berechnung	200
Meßbereich.	
Abtastungsmodus	$\theta = 4.0 - 28.0^\circ$, ω -scan
Zahl der gemessenen	0 - 1,0 20,0 , 0 0000
Reflexe	18211
Zahl der unabhängigen	10211
Refleve	10167 [R(int) = 0.0578]
Zahl der beobachteten	10107 [R(mt) = 0.0570]
Deflava	8320 mit $I > 2\sigma(I)$
Vorrekturon	Lorentz und Polorisations
Korrekturen	folton ampirische Absorp
	tionskonsektur
	$(M_{\rm e}K_{\rm e}) = 21.22 \text{ cm}^{-1}$
Cr. 1	$\mu(MOK\alpha) = 21,33 \text{ cm}^{-1}$
Strukturaufklarung	Patterson-Methoden
Verfeinerung	Vollmatrix-Verfeinerung an
	F ² an 1016/ Reflexen
Verwendete Rechen-	SHELXS-86 [9];
programme	SHELXL-93 [9];
	SCHAKAL [10]
Atomformfaktoren, $\Delta f'$, $\Delta f''$	[11, 12]
$R = \Sigma F_{o} - F_{c} / \Sigma F_{o} $	0,063 [mit 8320 Reflexen]
wR_2 (alle Daten)	0,1919 [mit 10167 Reflexen]

anlaßt uns, diese Struktur auch ohne elementaranalytische und spektroskopische Informationen zu publizieren.

Tab. I enthält die kristallographischen Daten und Angaben zur Strukturlösung, Tab. II die Bindungslängen und -winkel, Tab. III die Atomkoordinaten*.

0932-0776/94/0700-0983 \$ 06.00 © 1994 Verlag der Zeitschrift für Naturforschung. All rights reserved.

BY ND

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen. This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

^{*} Sonderdruckanforderungen an Prof. Dr. K. Dehnicke.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 58151 angefordert werden.

Sb(1)-O(1) 213,6(5) Sb(1)-Cl(1) 232,7(3) Sb(1) - O(2)195,9(6) Sb(2)-Cl(2)239,4(3) Sb(1) - O(3)192,9(6) Sb(2)-Cl(3)235.8(3) Sb(2)-Cl(4)238,5(3) Sb(1)-O(1A) 208.0(5) Sb(1)-O(5A) 195,9(6) Sb(2)-Cl(7)241,1(3)Sb(3)-Cl(5) Sb(2) - O(3)197,0(6) 233.0(3) Sb(3)-Cl(6) 236,1(3) Sb(2) - O(4)193.1(6) Sb(3)-O(1) 208,8(6) Sb(3)-O(2) 197,2(6) P(1) - N(1)160(1)P(2) - N(2)196,5(6) 162,2(9) Sb(3)-O(4) P-C 179(1) - 182(1)Sb(3)-O(5) 200,9(5) O(1) - Sb(1) - O(2)79,4(2) Cl(3) - Sb(2) - Cl(7)177.80(9)Cl(4)-Sb(2)-Cl(7) O(1) - Sb(1) - O(3)89.6(2) 88,11(9) O(1)-Sb(1)-O(1A) 78,6(2) O(1) - Sb(1) - O(5A)93,4(2) O(1) - Sb(3) - O(2)80.3(2)O(1) - Sb(3) - O(4)O(1) - Sb(1A) - O(5)78,6(2) 92,1(2) O(1) - Sb(3) - O(5)77.3(3) O(2) - Sb(1) - O(3)98.0(2) 91,5(2) O(2) - Sb(1) - O(1A)89,4(2) O(2) - Sb(3) - O(4)O(2) - Sb(1) - O(5A)167,1(2) O(2) - Sb(3) - O(5)91,3(2) O(3) - Sb(1) - O(1A)164.7(2)O(4) - Sb(3) - O(5)168,5(3) O(3) - Sb(1) - O(5A)Cl(5) - Sb(3) - O(1)165,9(2) 92,6(2) Cl(1) - Sb(1) - O(1)168,7(2)Cl(5) - Sb(3) - O(2)90,5(2) Cl(1) - Sb(1) - O(2)90,2(2) Cl(5) - Sb(3) - O(4)98,8(2) Cl(1)-Sb(1)-O(3) Cl(5)-Sb(3)-O(5) 96.5(2) 92.3(2) Cl(1) - Sb(1) - O(1A)Cl(6) - Sb(3) - O(1)96,9(2) 96,6(2) 176,4(2) Cl(1) - Sb(1) - O(5A)96,0(2) Cl(6) - Sb(3) - O(2)Cl(6) - Sb(3) - O(4)86.7(2) Cl(6)-Sb(3)-O(5) 89 9(2) O(3) - Sb(2) - O(4)100,4(2)Cl(2) - Sb(2) - O(3)83,9(2) Cl(5) - Sb(3) - Cl(6)92,93(8) Cl(2) - Sb(2) - O(4)174,7(2) Cl(3) - Sb(2) - O(3)92,9(2) Sb(1)-O(1)-Sb(1A) 101,4(2) Cl(3) - Sb(2) - O(4)91,9(2) Sb(1) - O(1) - Sb(3)94,6(2) Cl(4) - Sb(2) - O(3)170,7(2)Sb(3) - O(1) - Sb(1A)98,5(2) Cl(4) - Sb(2) - O(4)88.1(2) Sb(1) - O(2) - Sb(3)104,3(3) Cl(7) - Sb(2) - O(3)88,3(2) Sb(1) - O(3) - Sb(2)129,6(3) Cl(7) - Sb(2) - O(4)89,6(2) Sb(2) - O(4) - Sb(3)132,5(3) Cl(2) - Sb(2) - Cl(3)90,76(9) Sb(3)-O(5)-Sb(1A) 105,5(2) Cl(2)-Sb(2)-Cl(4) 87,37(9) Cl(2) - Sb(2) - Cl(7)87,56(9) Cl(3) - Sb(2) - Cl(4)90,39(9)

Tab. II. Ausgewählte Bindungslängen [pm] und -winkel [°] in (Ph₃PNH₂)₄[Sb₆O₁₀Cl₁₄]·2 CH₃CN.

Die Verbindung besteht aus Triphenyl-aminophosphonium-Kationen, $[Sb_6O_{10}Cl_4]^4$ -Ionen und eingelagerten Acetonitrilmolekülen ohne erkennbare bindende Wechselwirkungen. Die an die N-Atome der beiden symmetrieunabhängigen $[Ph_3PNH_2]^+$ -Ionen gebundenen H-Atome ließen sich durch Differenz-Fourier-Analysen lokalisieren. Das Kation weist im Vergleich zu den Strukturen dieses Ions mit verschiedenen anderen Gegenionen [2] keine Besonderheiten auf.

Dagegen hat das $[Sb_6O_{10}Cl_{14}]^{4-}$ -Ion einen bemerkenswerten Aufbau (Abb. 1). In ihm sind die sechs Antimonatome über μ_2 -O- und μ_3 -O-Brükken zentrosymmetrisch zu einem clusterähnlichen Gerüst verknüpft. Die innere Struktur besteht aus vier Antimonatomen, die zusammen mit sechs Sauerstoffatomen einen verzerrten Doppelwürfel mit einer gemeinsamen Fläche (Sb1, Sb1A, O1 und O1A) ausbilden, wobei zwei Ecken des Dop-

Tab. III. Atomkoordinaten und Parameter U _{eg} für der	n
äquivalenten isotropen Temperaturfaktor bei -70 °C	С
für $(Ph_3PNH_2)_4[Sb_6O_{10}Cl_{14}] \cdot 2CH_3CN$. U _{eq} in Å ² , be	-
rechnet nach [13], bezogen auf den Temperaturfakto	r
$\exp[-8\pi^2 U_{eq}\sin^2\theta/\lambda^2].$	

Atom	n <i>x/a</i>	y/b	z/c	$U_{eq}\!/U_{iso}$
Sb1	0,09838(4)	0,88979(4)	0,05999(3)	0,0297(1)
Sb2	0,23295(4)	0,97594(4)	0,20364(3)	0,0332(2)
Sb3	0,13908(4)	1,11685(4)	-0,00834(3)	0,0306(2)
Cl1	0,2195(2)	0,7014(2)	0,0491(1)	0,0430(6)
Cl2	0,2553(2)	0,8468(2)	0,3372(1)	0,0511(7)
C13	0,4176(2)	0,8558(2)	0,1631(2)	0,0515(7)
Cl4	0,3211(2)	1,0759(2)	0,2674(1)	0,0460(6)
C15	0,2869(2)	1,1417(2)	-0,0952(1)	0,0432(6)
Cl6	0,0533(2)	1,3150(2)	-0,0008(1)	0,0425(6)
CI7	0,0472(2)	1,0975(2)	0,2504(1)	0,0494(7)
01	0,0033(4)	1,0723(4)	0,0476(3)	0,030(1)
02	0,2056(5)	0,9491(5)	-0,0080(3)	0,035(2)
03	0,1547(5)	0,8835(5)	0,169/(3)	0,036(2)
04	0,2135(5)	1,0911(5)	0,1015(3) 0,1071(2)	0,040(2)
D3	0,0357(4)	1,1480(5)	-0.10/1(3)	0,034(2)
P1 N1	0.0911(2) 0.7022(8)	0,2072(2)	0,2043(1) 0,1701(5)	0,0333(0)
C1	0,7952(8) 0,7245(8)	0,1049(8) 0,3324(7)	0.1701(5) 0.2007(5)	0,047(3)
C	0,7245(8)	0,3524(7) 0.3501(8)	0,2007(5)	0.042(2)
C3	0.8130(8)	0,3501(8)	0.1303(0)	0,043(3)
CA	0,851(1) 0.762(1)	0,4309(9)	0.1873(8)	0,059(4)
C5	0.672(1)	0,5356(9)	0,2382(8)	0.065(4)
C6	0.6553(8)	0,3154(9) 0.4155(8)	0.2302(0)	0.049(3)
C7	0.6622(7)	0.1584(7)	0.3126(5)	0.038(2)
C8	0.757(1)	0.0997(9)	0.3688(7)	0.058(3)
C9	0.739(1)	0.063(1)	0.4525(7)	0.063(4)
C10	0.627(1)	0.083(1)	0.4798(8)	0.075(5)
C11	0.532(1)	0.138(1)	0.4235(8)	0.074(5)
C12	0.5523(9)	0.177(1)	0.3410(7)	0.066(4)
C13	0.5647(7)	0.2459(7)	0.1374(5)	0.038(2)
C14	0.5345(8)	0.1587(8)	0.1273(6)	0.049(3)
C15	0,446(1)	0.185(1)	0,0723(8)	0.061(4)
C16	0,3772(9)	0,296(1)	0,0342(7)	0,057(3)
C17	0,4086(9)	0,3857(9)	0,0458(7)	0,059(3)
C18	0,5026(8)	0,3597(8)	0,0975(7)	0,048(3)
P2	0,0244(2)	0,2933(2)	0,6521(1)	0,0373(6)
N2	0,0188(8)	0,1765(7)	0,7113(5)	0,046(3)
C19	-0,0596(8)	0,4232(7)	0,6902(5)	0,045(3)
C20	-0,0474(8)	0,4204(8)	0,7756(6)	0,047(3)
C21	-0,113(1)	0,5155(9)	0,8090(7)	0,061(3)
C22	-0,192(1)	0,6153(9)	0,7599(8)	0,071(4)
C23	-0,206(1)	0,6191(9)	0,6744(8)	0,073(4)
C24	-0,138(1)	0,523(1)	0,6390(7)	0,063(3)
C25	0,1745(7)	0,2773(7)	0,6462(5)	0,040(2)
C26	0,2631(8)	0,1694(8)	0,6766(6)	0,051(3)
C2/	0,3797(9)	0,158(1)	0,6659(8)	0,067(4)
C28	0,402(1)	0,247(1)	0,6237(7)	0,060(4)
C29	0,514(1) 0,1006(0)	0,354(1) 0.3705(8)	0,5922(7)	0,038(4)
C 30	0,1990(9) 0,0281(7)	0,3703(8)	0,0044(0) 0.5487(5)	0,049(3)
C31	-0,0281(7) 0.0543(0)	0,2987(7) 0.259(1)	0,3487(5)	0.040(2)
C33	0.015(1)	0.256(1)	0 4102(7)	0.065(4)
C34	-0.101(1)	0.291(1)	0.3943(7)	0.060(4)
C35	-0.1849(9)	0.3275(9)	0,4557(7)	0.059(3)
C36	-0.1453(8)	0.3313(8)	0.5350(6)	0.048(3)
N3	0.428(1)	0.499(1)	0.399(1)	0.113(4)*
C37	0.348(1)	0.589(1)	0.2455(7)	0.062(3)*
C38	0,393(1)	0,540(1)	0,3292(8)	0,071(3)*

* Isotrop verfeinert.

Abb. 1. Ansicht des [Sb₆O₁₀Cl₁₄]⁴⁻-Ions in der Struktur von (Ph₃PNH₂)₄[Sb₆O₁₀Cl₁₄]·2CH₃CN.

pelwürfels unbesetzt sind. Dasselbe Bauprinzip wurde auch in dem Molekülkomplex Sb₄O₆Ph₈ [3] beobachtet, dessen Sb₄O₆-Gerüst ganz ähnliche Bindungsparameter aufweist. Während in Sb₄O₆Ph₈ nur zwei der vier Antimonatome durch die terminal gebundenen Phenylgruppen die Koordinationszahl sechs erreichen, die übrigen nur fünf, sind im [Sb₆O₁₀Cl₁₄]⁴⁻-Ion alle Antimonatome verzerrt oktaedrisch koordiniert. Sie erreichen das durch terminal gebundene Chloratome sowie durch zwei chelatisierend über die O-Atome an den Doppelwürfel koordinierte O₂SbCl₄-Fragmente (Antimonatome Sb2 und Sb2A). Auf diese Weise resultieren für die Antimonatome drei verschiedene Umgebungen, nämlich an Sb(1) die Koordination ClSbO₅, an Sb(2) Cl₄SbO₂ und an Sb(3) Cl_2SbO_4 . Dies hat auch Einfluß auf die Sb-Cl-Bindungslängen, die an Sb(1) mit 232,7 pm die kürzeste ist, gegenüber im Mittel 234,6 pm an Sb(3) und im Mittel 238,7 pm an Sb(2). Die von den Sauerstoffatomen mit μ_3 -O-Brückenfunktionen ausgehenden Sb-O-Bindungen sind mit Abständen von 208,0-213,6 pm deutlich länger als die Sb-O-Abstände mit μ_2 -O-Brückenfunktion, die im Bereich von 192,9-197,2 pm liegen. Dies entspricht sehr gut den Beobachtungen, die auch an anderen Antimon-Sauerstoff-Verbindungen mit μ_2 -O- und μ_3 -O-Brückenfunktionen gemacht wurden. So werden in der Struktur von Sb_2O_5 [4] Sb-O-Bindungslängen von 189,4–191,4(3) pm für die μ_2 -O-Brücken und von 204,3–210,2(3) pm für die μ_3 -O-Brücken gefunden. Ähnlich sind die Verhältnisse bei Na[Sb₅O₁₃] [5] und in dem erwähnten Phenylderivat Sb₄O₆Ph₈ [3]. Auch in verschiedenen Molekülkomplexen des Antimon(V), in denen nur μ_2 -O-Brücken angetroffen werden [6-8], sind die Sb-O-Abstände im Bereich der entsprechenden Sb-O-Bindungslängen im [Sb₆O₁₀Cl₁₄]⁴⁻-Ion. Hierbei fällt auf, daß diese Sb-O-Abstände weitgehend unabhängig von den Bindungswinkeln an den O-Atomen sind.

Herrn Prof. Dr. A. Schmidt, Stuttgart, danken wir für wichtige Hinweise. Dem Fonds der Chemischen Industrie danken wir für seine finanzielle Unterstützung.

- [1] R. Garbe, J. Pebler, K. Dehnicke, D. Fenske, H. Goesmann, G. Baum, Z. Anorg. Allg. Chem. 620, 592 (1994).
- M. B. Hursthouse, N. P. C. Walker, C. P. Warrens, J. D. Woollins, J. Chem. Soc. Dalton Trans. 1985, 1043; C. J. Barner, T. J. Collins, B. E. Mapes, B. D. Santarsiero, Inorg. Chem. 25, 4323 (1986); M. B. Hursthouse, R. L. Short, P. F. Kelly, J. D. Woollins, Acta Crystallogr. 44, 1731 (1988); F. Weller, D. Nußhär, K. Dehnicke, F. Gingl, J. Strähle, Z. Anorg. Allg. Chem. 602, 7 (1991); D. Nußhär, F. Weller, K. Dehnicke, W. Hiller, J. Alloys Compounds 183, 30 (1992); D. Nußhär, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem. 619, 1121 (1993).
- [3] J. Bordner, G. O. Doak, T. S. Everett, J. Am. Chem. Soc. 108, 4206 (1986).
- [4] M. Jansen, Acta Crystallogr. B35, 539 (1979).
- [5] D. Bodenstein, W. Clegg, G. Jäger, P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick, Z. Naturforsch. 38b, 172 (1983).

- [6] F.-J. Koller, W. Schwarz, A. Schmidt, Z. Naturforsch. 34b, 563 (1979).
- [7] S. Blösl, W. Schwarz, A. Schmidt, Z. Naturforsch. 34b, 1711 (1979).
- [8] S. Blösl, W. Schwarz, A. Schmidt, Z. Anorg. Allg. Chem. 495, 177 (1982).
- [9] G. M. Sheldrick, SHELXS-86, SHELXL-93, Programme zur Kristallstrukturanalyse, Göttingen (1986, 1993).
- [10] E. Keller, SCHAKAL, A FORTRAN Program for the Graphical Representation of Molecular and Crystallographic Models, Freiburg (1986).
- [11] D. T. Cromer, J. B. Mann, Acta Crystallogr. A24, 321 (1968).
- [12] D. T. Cromer, J. Liberman, J. Chem. Phys. 53, 1891 (1970).
- [13] W. C. Hamilton, Acta Crystallogr. 12, 609 (1959).