Synthese und Kristallstruktur von [{Cp(CO)₂Fe}₂Sn(F)FBF₃]

Synthesis and Crystal Structure of [{Cp(CO)₂Fe}₂Sn(F)FBF₃]

Kurt Merzweiler*, Laurent Weisse,

Harald Kraus Institut für Anorganische Chemie der Universität Karlsruhe, Engesserstraße Geb.-Nr. 30.45, D-76128 Karlsruhe

Z. Naturforsch. **49 b**, 425–429 (1994); eingegangen am 23. August 1993

Tin, Tetrafluoroborate, Crystal Structure

[{Cp(CO)₂Fe]₂SnCl₂] reacts with AgBF₄ to form [{Cp(CO)₂Fe]₂Sn(F)FBF₃]**1.1** crystallizes in two monoclinic modifications with a = 1018.2(4), b = 1321.1(5), c = 1364.8(5) pm, $\beta = 104.96(4)^{\circ}$ (**1a**), and a = 983.1(2), b = 1760.2(6), c = 1060.4(3) pm, $\beta = 104.28(2)^{\circ}$ (**1b**). **1a** and **1b** contain a nearly tetrahedrally coordinated tin atom which is bonded to two {Cp(CO)₂Fe} fragments, a F atom and a BF₄ group.

Einleitung

Metallorganisch substituierte Zinnchloride der Zusammensetzung $R_x SnCl_{4-x}$ (x = 1, 2, 3; R = $\{Cp(CO)_2Fe\}, \{Cp(CO)_3Mo\}, \{(CO)_4Co\}, etc.\}$ sind bereits seit langem bekannt und auch strukturell gut charakterisiert [1]. Im Gegensatz dazu liegen über entsprechende Fluorderivate nur wenige Informationen vor. Beispielsweise erwähnten Marks und Seyam im Zusammenhang mit der Synthese von SiF₃- und GeF₃-Komplexen nicht näher charakterisierte Zinnanaloga, die durch Umsetzung von $SnCl_3$ -Komplexen mit AgBF₄ entstehen [2]. Um nun einen genaueren Einblick in die Reaktion von AgBF₄ mit metallorganisch substituierten Zinnhalogeniden zu erhalten, setzten wir in einem Modellexperiment [{Cp(CO)₂Fe}₂SnCl₂] mit AgBF₄ um.

Ergebnisse und Diskussion

 $[{Cp(CO)_2Fe}_2SnCl_2]$ reagiert mit AgBF₄ in siedendem THF unter Abspaltung von AgCl und BF₃ zu $[{Cp(CO)_2Fe}_2Sn(F)FBF_3]$ **1.**

* Sonderdruckanforderungen an Priv.-Doz. Dr. K. Merzweiler.

Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen 0932–0776/94/0300–0425/\$ 01.30/0

$$[\{Cp(CO)_2Fe\}_2SnCl_2] + 2AgBF_4 \xrightarrow{-2AgCl, -BF_3}$$
$$[\{Cp(CO)_2Fe\}_2Sn(F)FBF_3]$$

Nach Abfiltrieren des AgCl und Abkondensieren des Lösungsmittels bleibt **1** als eine gelborange, ölige Masse zurück, die aus Aceton/*n*-Hexan umkristallisiert werden kann. **1** bildet dabei orange, rautenförmige Kristalle, die sich in polaren Lösungsmitteln, wie z. B. THF und Aceton, lösen und in unpolaren Kohlenwasserstoffen unlöslich sind. Im IR-Spektrum zeigt **1** ν CO-Banden bei 2000 (st), 1970 (mst) und 1950 (st) cm⁻¹.

Kristallstrukturuntersuchungen

1 kristallisiert aus einem Aceton/n-Hexan-Gemisch in zwei monoklinen Modifikationen 1a und 1b, die wir mit Röntgenbeugungsmethoden untersuchten. Die wichtigsten Angaben zu den Strukturanalysen sind in Tab. I zusammengefaßt. Die Tab. II und III enthalten Lageparameter und äquivalente isotrope Temperaturfaktoren. Die wichtigsten Bindungsparameter befinden sich in den Tab. IV und V.

Nach den Ergebnissen der Strukturuntersuchungen enthält **1** isolierte $[{Cp(CO)_2Fe}_2Sn(F)FBF_3]$ -Moleküle, in denen das Zinnatom verzerrt tetraedrisch an zwei {Cp(CO)₂Fe}-Gruppen, ein Fluoratom und eine BF4-Einheit gebunden ist. Die Koordination des Zinnatoms ist in beiden Modifikationen von 1 sehr ähnlich, jedoch unterscheiden sich 1a und 1b in der relativen Anordnung der Substituenten zueinander. Am deutlichsten werden diese Unterschiede, wenn man die Stellung der {Cp(CO)₂Fe}-Substituenten in **1a** (Abb. 1) und **1b** (Abb. 2) vergleicht. In **1a** sind die $\{Cp(CO)_2Fe\}$ -Gruppen nahezu spiegelbildlich zur Ebene F(2) - Sn - F(1)angeordnet, während die $\{Cp(CO)_{2}Fe\}$ -Einheiten in **1b** so um die Sn-Fe-Bindung gedreht sind, daß die Cp-Ringe in entgegengesetzte Richtungen weisen. Die Geometrie der SnFe2-Einheit ist in beiden Modifikationen fast identisch. So findet man Sn-Fe-Abstände von 250,6(1) pm in **1a** und 249,6(2) und 250,3(2) pm in **1b.** Die Fe-Sn-Fe-Winkel liegen mit 135,7(1)° in 1a und 132,7(1)° in 1b weit über dem Wert des idealen Tetraederwinkels. Diese Abweichung kann auf den hohen sterischen Anspruch der metallorganischen Substituenten zurückgeführt werden. Ein ähnlich großer Fe-Sn-Fe-Winkel (128,6(3)°) konnte auch in [{Cp(CO)₂Fe]₂SnCl₂] beobachtet werden [3]. Zusätzlich zu den {Cp(CO)₂Fe}-Substituenten wird das Zinnatom von den Fluoratomen F(1) und F(2) koordiniert. Erwartungsgemäß ist die

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen. This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

Verbindung	1 (Modifikation a)	1 (Modifikation b)	Tab. I. Daten zu den Kristallstruktur- analysen*.			
Raumgruppe	$P2_1/n$	$P2_1/n$				
Gitterkonstanten						
a	1018,2(4) pm	983,1(2) pm				
b	1321,1(5) pm	1760,2(6) pm				
с	1364,8(5) pm	1060,4(3) pm				
β	104,96(4)°	104,28(2)°				
Zellvolumen V	1773,8 · 10 ⁶ pm ³	1778,3 · 10 ⁶ pm ³				
Meßtemperatur	213 K	R.T.				
Formeleinheiten Z	4	4				
Dichte (ber.)	1,96 g/cm ³	$1,96 \text{ g/cm}^3$				
Strahlung	ΜοΚα	ΜοΚα				
Meßbereich (2θ)	3-56°	3-54°				
Zahl der gemessenen						
Reflexe	4568	3832				
Zahl der unabh.						
Reflexe	4056	3180				
Zahl der Reflexe						
mit $F > 3\sigma(F)$	3930	2841				
Absorptionskoeffizient						
$\mu(MoK\alpha)$	29.5 cm ⁻¹	29.4 cm ⁻¹				
Strukturlösung	direkte Methoden	direkte Methoden				
Verfeinerung	Alle Atome außer	Alle Atome außer				
8	H anisotrop.	H anisotrop.				
	H-Lagen berechnet	H-Lagen berechnet	* Weitere Einzelheiten zu den Kristall-			
Zahl der verfeinerten	11 Zugen eereennee	in Lugen correction	strukturuntersuchungen können beim			
Parameter	246	246	Fachinformationszentrum Karlsruhe			
R/R -Wert	0.039/0.037	0.058/0.050	GmbH, D-76344 Eggenstein-Leopolds-			
Meßgerät Siemens AFD II		AEDII	hafen, unter Angabe der Hinterle-			
Verwendete	Stemen		gungsnummer CSD 57957, der Autoren			
Rechenprogramme	SHELX [10], SCHAKAL [11]		und des Zeitschriftenzitats angeforde werden.			

Abb. 1. Molekülstruktur von **1** (Modifikation a) im Kristall.

Abb. 2. Molekülstruktur von 1 (Modifikation b) im Kristall.

Tab. II. Atomkoordinaten und äquivalente isotrope Temperaturfaktoren $[pm^{2} \cdot 10^4]$ von **1a.** (U_{eq} definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors).

Tab. III.	Atomkoordinaten	und	äquivalente	isotrope
Tempera	turfaktoren [pm2.10	04] vo	$n 1 \mathbf{b} \cdot (\mathbf{U}_{eq} \det$	finiert als
ein Dritte	el der Spur des orth	ogon	alen U _{ij} -Tens	sors).
ein Dritte	el der Spur des orth	ogon	alen U_{ij} -Tens	sors).

Atom	x/a	y/b	z/c	\mathbf{U}_{eq}	Atom	x/a	y/b	z/c	\mathbf{U}_{eq}
Sn	0,01837(4)	0,00241(3)	0,20275(3)	0,0153(1)	Sn	0,61637(8)	0,13497(4)	0,96734(7)	0,0243(2)
Fe(1)	-0,2030(1)	0,08819(7)	0,19686(6)	0,0203(3)	Fe(1)	0,5877(2)	0,2583(1)	0,0740(2)	0,0282(5)
Fe(2)	0,2253(1)	-0,04568(7)	0,33897(6)	0,0174(2)	Fe(2)	0,7141(2)	0,1014(1)	0,7778(2)	0,0335(6)
B	-0,0883(8)	-0,2110(6)	0,1285(6)	0,027(2)	В	0,827(2)	0,0575(9)	0,213(2)	0,050(6)
F(1)	0,0877(4)	0,0723(3)	0,0925(3)	0,025(1)	F(1)	0,4293(6)	0,0807(3)	0,9416(6)	0,037(2)
F(2)	-0,0175(4)	-0,1223(3)	0,0970(3)	0,036(1)	F(2)	0,6905(7)	0,0528(4)	0,1185(7)	0,058(3)
F(3)	-0,1057(4)	-0,1853(3)	0,2233(3)	0,038(2)	F(3)	0,8847(7)	0,1265(4)	0,1864(8)	0,070(3)
F(4)	-0,2104(5)	-0,2262(4)	0,0593(3)	0,051(2)	F(4)	0,9093(8)	-0,0011(4)	0,193(1)	0,090(4)
F(5)	-0,0083(5)	-0,2962(3)	0,1368(4)	0,052(2)	F(5)	0,810(1)	0,0546(5)	0,3339(7)	0,090(4)
O(1)	-0,2335(5)	-0,0286(5)	0,3715(4)	0,050(2)	O(1)	0,290(1)	0,2637(6)	0,9469(9)	0,072(4)
O(2)	-0,0608(6)	0,2592(5)	0,3118(5)	0,056(2)	O(2)	0,524(1)	0,1760(5)	0,2903(8)	0,056(4)
O(3)	0,0551(5)	-0,1256(4)	0,4637(4)	0,042(2)	O(3)	0,997(1)	0,1367(6)	0,9272(9)	0,079(4)
O(4)	0,2348(6)	0,1548(4)	0,4274(4)	0,043(2)	O(4)	0,655(1)	0,2559(6)	0,679(1)	0,084(5)
C(1)	-0,2174(7)	0,0180(6)	0,3050(5)	0,029(2)	C(1)	0,401(1)	0,2599(7)	0,990(1)	0,040(4)
C(2)	-0,1141(7)	0,1908(6)	0,2681(6)	0,035(2)	C(2)	0,556(2)	0,2082(6)	0,207(1)	0,047(5)
C(3)	-0,2507(8)	0,1333(7)	0,0449(5)	0,044(3)	C(3)	0,659(2)	0,3410(7)	0,966(1)	0,065(6)
C(4)	-0,2809(8)	0,0292(7)	0,0504(5)	0,044(3)	C(4)	0,611(1)	0,3768(6)	0,069(1)	0,059(6)
C(5)	-0,3781(8)	0,0206(6)	0,1066(5)	0,041(3)	C(5)	0,693(1)	0,3473(7)	0,188(1)	0,050(5)
C(6)	-0,4084(7)	0,1215(6)	0,1340(5)	0,033(2)	C(6)	0,792(1)	0,2960(7)	0,159(1)	0,048(5)
C(7)	-0,3296(8)	0,1898(6)	0,0970(6)	0,038(3)	C(7)	0,773(1)	0,2927(7)	0,026(1)	0,046(5)
C(8)	0,1194(7)	-0,0951(5)	0,4140(5)	0,027(2)	C(8)	0,885(1)	0,1218(8)	0,871(1)	0,050(5)
C(9)	0,2307(7)	0,0768(5)	0,3925(5)	0,024(2)	C(9)	0,679(1)	0,1951(8)	0,717(1)	0,048(5)
C(10)	0,2806(7)	-0,1530(7)	0,2429(6)	0,046(3)	C(10)	0,620(2)	-0,0045(8)	0,772(1)	0,061(6)
C(11)	0,3263(8)	-0,1854(6)	0,3425(7)	0,045(3)	C(11)	0,540(2)	0,0382(8)	0,672(2)	0,060(6)
C(12)	0,4160(7)	-0,1142(7)	0,3969(6)	0,043(3)	C(12)	0,623(2)	0,057(1)	0,589(2)	0,084(8)
C(13)	0,4277(7)	-0,0331(6)	0,3309(7)	0,046(3)	C(13)	0,753(3)	0,0268(9)	0,639(2)	0,11(1)
C(14)	0,3410(8)	-0,0603(7)	0,2337(6)	0,048(3)	C(14)	0,761(2)	-0,0128(8)	0,758(2)	0,073(7)

Tab. IV. Wichtigste Bindungslängen und -winkel in **1a**.

Bindungslängen (pm)						
Sn-Fe(1)	250,6(1)	Sn-Fe(2)	250,6(1)			
Sn - F(1)	204,1(4)	Sn-F(2)	215,8(4)			
B-F(2)	149,7(9)	B - F(3)	139,3(9)			
B-F(4)	136,9(9)	B-F(5)	137,6(9)			
Fe(1) - C(1)	178,2(7)	Fe(1) - C(2)	177,4(8)			
Fe(1) - C(3)	209,1(7)	Fe(1) - C(4)	210,0(7)			
Fe(1) - C(5)	208,8(8)	Fe(1) - C(6)	209,3(7)			
Fe(1) - C(7)	210,1(8)	Fe(2) - C(8)	179,1(7)			
Fe(2) - C(9)	177.1(7)	Fe(2) - C(10)	210,3(9)			
Fe(2) - C(11)	210,7(8)	Fe(2) - C(12)	210,2(8)			
Fe(2) - C(13)	209,8(8)	Fe(2) - C(14)	208,9(8)			
C(1) - O(1)	114,2(9)	C(2) - O(2)	114(1)			
C(8) - O(3)	113,2(8)	C(9) - O(4)	113,1(9)			
C-C in den Cp-Ringen: 139(1)-144(1)						

Bindungswinkel (°)

Fe(1)-Sn - $Fe(2)$	135,7(1)	Fe(1)-Sn-F(1)	104,6(1)
Fe(1) - Sn - F(2)	109,2(1)	Fe(2)-Sn-F(1)	106,1(1)
Fe(2) - Sn - F(2)	105,5(1)	F(1) - Sn - F(2)	83,3(2)
Sn-F(2)-B	114,6(4)	F(2) - B - F(3)	105,2(5)
F(2) - B - F(4)	109,6(6)	F(2) - B - F(5)	110,2(6)
F(3) - B - F(4)	111,5(7)	F(3) - B - F(5)	109,7(6)
F(4) - B - F(5)	110,5(6)	Fe(2) - C(9) - O(4)	179,5(6)
Fe(1) - C(1) - O(1)	176,3(6)	Fe(2) - C(8) - O(3)	178,1(6)
Fe(1) - C(2) - O(2)	177,3(7)		

C-C-C in den Cp-Ringen: 107,1(7)-1	109,0(7)
------------------------------------	----------

Bindungslängen (pm) Sn-Fe(1)Sn-Fe(2)249,6(2)250,3(2)Sn - F(1)203,0(6) Sn-F(2)214,8(7)B-F(2)B-F(3)140(2)147(2) B-F(4)136(2)B-F(5)133(2)183(1) Fe(1) - C(2)176(1)Fe(1) - C(1)Fe(1) - C(4) Fe(1) - C(6) Fe(2) - C(8)Fe(1) - C(3)208(1) 210(1) Fe(1)-C(5) Fe(1)-C(7) Fe(2)-C(9)209(1)210(1)209(1) 176(1)177(1) Fe(2) - C(10)207(1)Fe(2) - C(11)Fe(2) - C(12)213(2)211(2)Fe(2) - C(13)208(2)Fe(2) - C(14)209(1)107(2)C(2) - O(2)116(1)C(1) - O(1)C(8)-O(3) 115(2) C(9) - O(4)115(2)C-C in den Cp-Ringen: 136(3)-144(2) Bindungswinkel (°) Fe(1)-Sn-Fe(2)Fe(1) - Sn - F(1)Fe(2) - Sn - F(1)132,7(1) 105,7(2)Fe(1) - Sn - F(2)Fe(2) - Sn - F(2)107,6(2)

107,2(2)108,3(2) F(1) - Sn - F(2)85,0(3) Sn-F(2)-B124,0(8) F(2) - B - F(3)105(1)110(1)F(2) - B - F(4)109(1)F(2) - B - F(5)110(1) 113(1)F(3) - B - F(4)F(3) - B - F(5)F(4) - B - F(5)110(1)Fe(1) - C(1) - O(1)176(1)Fe(1) - C(2) - O(2)Fe(2) - C(9) - O(4)Fe(2) - C(8) - O(3)179(1)177(1)179(1) C-C-C in den Cp-Ringen: 101(1)-112(1)

Tab. V. Wichtigste Bindungslängen und -winkel in **1b.**

Sn-F-Bindung zum terminalen Fluoratom F(1) (**1a**: 204,1(4) pm, **1b**: 203,0(6) pm) wesentlich kürzer als die Sn-F-Bindung zum verbrückenden Fluoratom F(2) (**1a**: 215,8(4) pm, **1b**: 214,8(7) pm). Die Sn-F(1)-Abstände ähneln dabei den Werten, die man auch in anderen Verbindungen mit terminalen Sn-F-Bindungen gefunden hat, z. B. [$tBu_2Sn(OH)F_{2}$] (204,9(5) pm) [4],

[(PhMe₂Si)₃CSnMe₂F] (196,5(2) pm),

 $[(Me_3Si)_3CSnPh_2F]$ (196,5(8) pm) [5]. Dagegen können die Sn-F(2)-Abstände in einen Bereich eingeordnet werden, den man in Sn-F-Sn-Brücken beobachtet hat. Beispielsweise betragen die Sn-F-Abstände in Me₃SnF 215 pm und 245 pm [7], in Me₂SnF₂ 212 pm [8]. Die B-F-Bindungen der BF₄-Einheit gliedern sich in drei kürzere Bindungen zu den terminalen F-Atomen F(3)-F(5)(1a: 136,9(9) - 139,3(9) pm, 1b: 133(2) - 140(2) pm)und eine längere Bindung zum Brückenfluoratom F(2) (1a: 149,7(9) pm, 1b: 147(2) pm). Diese Bindungslängen sind für koordinierte BF₄-Einheiten charakteristisch. Beispielsweise findet man in [(Ph₃P)₂(CO)Cl(H)IrFBF₃][8]B-F-Abstände von 132,9(9)-134,0(8) pm zu den terminalen Fluoratomen und von 144,8(6) pm zum Iridium-gebundenen Fluoratom.

Die BF₄-Einheit wirkt in **1** als einzähniger Ligand. Neben der starken Sn - F(2)-Bindung scheint jedoch auch eine schwache Wechselwirkung zum Fluoratom F(3) zu bestehen, da der Sn - F(3)-Ab-

Experimenteller Teil

Alle Arbeiten wurden unter Schutzgasatmosphäre durchgeführt. Die Lösungsmittel wurden nach Standard-Verfahren getrocknet. [$\{Cp(CO)_2Fe\}_2SnCl_2$] erhielten wir nach einer Literaturvorschrift [9].

Darstellung von $[{Cp(CO)_2Fe}_2Sn(F)FBF_3]$ (1)

Zu einer Lösung von 1,63 g (3,0 mmol)[{Cp(CO)₂Fe]₂SnCl₂] in 100 ml THF gibt man 1,17 g (6,0 mmol) AgBF₄ und erhitzt die Reaktionsmischung 3 h unter Rückfluß. Die Farbe der Reaktionslösung verändert sich dabei von rot nach gelborange und es fällt AgCl aus. Nach dem Abtrennen der unlöslichen Bestandteile wird das Filtrat mit 60 ml *n*-Heptan versetzt und die Lösung auf 50 ml eingeengt. Nach Zugabe von 40 ml Ether fällt **1** als gelbes Pulver aus, das aus einem Aceton/*n*-Heptan-Gemisch umkristallisiert werden kann. Dabei erhält man **1** als orange, rautenförmige Kristalle. – Ausbeute: 0,95 g (55%).

 $\begin{array}{c} C_{14}H_{10}BF_5Fe_2O_4Sn~(578,42)\\ Ber.~C~29,07~H~1,74\%,\\ Gef.~C~28,9~H~1,79\%. \end{array}$

IR-Spektrum (KBr): ν CO (cm⁻¹): 2000 (st), 1970 (mst), 1950 (st).

- M. S. Holt, W. L. Wilson, J. H. Nelson, Chem. Rev. 89, 11 (1989); J. A. Zubieta, J. J. Zuckerman, Prog. Inorg. Chem. 24, 251 (1978) und dort zitierte Literatur.
- [2] T. J. Marks, A. M. Seyam, J. Organomet. Chem. 31, C62 (1971).
- [3] J. E. O'Connor, E. R. Corey, Inorg. Chem. 6, 968 (1967).
- [4] H. Puff, H. Hevendehl, K. Höfer, H. Reuter, W. Schuh, J. Organomet. Chem. 287, 163 (1985).
- [5] S. S. Al-Juaid, S. M. Dhaher, C. E. Eaborn, P. B. Hitchcock, J. D. Smith, J. Organomet. Chem. 325, 117 (1987).

- [6] K. Yasuda, Y. Kawasaki, N. Kasai, T. Tanaka, Bull. Chem. Soc. Jpn. 38, 1216 (1965).
- [7] E. O. Schlemper, W. C. Hamilton, Inorg. Chem. 5, 995 (1966).
- [8] B. Olgemöller, H. Bauer, H. Löbermann, U. Nagel, W. Beck, Chem. Ber. 115, 2271 (1982).
- [9] F. Bonati, G. Wilkinson, J. Chem. Soc. 1964, 179.
- [10] G. M. Sheldrick, SHELX-76, SHELXS-86, Programs for Crystal Structure Determination, Cambridge (1976), Göttingen (1986).
- [11] E. Keller, SCHAKAL, A FORTRAN Program for the Graphical Representation of Molecular and Crystallographic Models, Freiburg (1986).