Ethylenedioxytetrathiafulvalenes: New Unsymmetrical \(\sigma \)-Donors

Theoretical and Physical Chemistry Institute, National Hellemic Research Foundation, 48, Vassileos Constantinou Ave., Athens 11635, Greece

Z. Naturforsch. 45b, 1216−1218 (1990); received January 15, 1990

Tetrathiafulvalenes, \(\sigma \)-Donors, Organic Conductors

Ethylenedioxybenzotetrathiafulvalene (EDOBTTF), ethylenedioxy-4,5-bijtetrathiаfulvalene (EDOP[4,5-b]TTF), ethylenedioxy-methylendithiotetrathiafulvalene (EDOMDTTTF), ethylenedioxyvinylendithiotetrathiafulvalene (EDOVDTTTF), and ethylenedioxomethylendiselenotetrathiafulvalene (EDOMSTTTF) have been prepared and characterized analytically and spectroscopically.

Since the discovery of superconductivity in ethylenedioxy-benzotetrathiafulvalene (EDOB-TTF) [1] and methylendithio-diselenotetrathiafulvalene (MDTTTF) [2], based on the unsymmetrical \(\sigma \)-donor molecules DMT (dimethyl-ethylenedithio-diselenanithiafulvalene) and MDTTF (= methylenedithiotetrathiafulvalene), respectively, several trials have been done in order to obtain new superconducting materials with unsymmetrical \(\sigma \)-donor molecules [3−7]. While the unsymmetrical \(\sigma \)-donor DM ET could be prepared by cross-coupling of 1,3-dithiolate with triethyl phosphite followed by column chromatography separation. Since the discovery of superconductivity in

Experimental

Reagents and apparatus

Reagents and apparatus described in our previous papers [3, 8−10, 13] as well as reagents described in [12] were used.

Preparation of ethylenedioxybenzotetrathiafulvalene 1-2 and similar compounds 1-3−1-6

A solution of 1 (342 mg 2 mmol) and 2 (368 mg, 2 mmol) in triethylphosphite (10 ml) was heated at −150 °C for 5 h with stirring under a nitrogen atmosphere.

The mixture was concentrated to dryness and the residue was dissolved in benzene cyclohexane (1:1) and subjected to a silica gel column chromatography (1 m) eluting with benzene cyclohexane (1:1). The initial yellow band yielded 2-2 (6 mg)

* Reprint requests to Dr. G. C. Papavassiliou.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932−0776/90/0800−1216/$ 01.00/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max Planck Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:

Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

On 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

* Reprint requests to Dr. G. C. Papavassiliou.
the subsequent orange band yielded 1-2 (44 mg, 7% based on 1) and the final red band yielded 1-1 (<1 mg) [3, 11]. Compound 1-2 was purified by dissolving in dichloromethane and precipitation with hexane. It was found to be a red crystalline solid; m. p. = 175 °C; m. w. = 312 (mass spectrum). Fig. 1 shows the UV-visible spectrum of 1-2 as well as the spectra of 1-1 and 2-2 for comparison.

Compounds 1-3-1-6 were prepared by the same method except that the mixture obtained after treatment with triethyl phosphite was cooled to -10 °C and the precipitate was filtered off; the filtrate was concentrated and subjected to a column chromatography as in the previous case. A second crop may be obtained from the precipitate. Preparative, analytical and UV-spectral data are listed in Table 1.

Results and Discussion

Coupling of 1 with each of the compounds 2–6 via triethyl phosphite afforded mixtures of the self-coupling products 1-1 and 2-2–6-6 with the cross-coupling products 1-2–1-6, respectively. Because of the widely varying polarity of these compounds, the separation of each cross-coupling product from the corresponding self-coupling products was found to be easy. This procedure can be applied for the preparation of a large number of unsymmetrical tetraheterofulvalenes. The cross-coupling products were found to be good \(\pi \)-donors. They react with TCNQ (tetracyanoquinodimethane), which is a \(\pi \)-acceptor, to give crystalline charge transfer complexes (CTC). The compound 1-2, TCNQ was found to be an insulator, while the compounds 1-3, TCNQ, 1-4, TCNQ, 1-5, TCNQ and 1-6, TCNQ were found to be conducting solids. It should be noted that, in contrast to the self-coupling product BVDTTTF 5-5 [15], the corresponding cross-coupling product, EDOVDTTTF 1-5, gave a CTC with TCNQ. This effect indicates that the substitution of an vinylenedithio group by an ethylenedioxy group decreases the half wave oxidation potentials, and consequently a better \(\pi \)-donor was obtained. Using the new \(\pi \)-donors (D) a number of cation radical salts (CRS) of the type D\(_X \) (where X = I\(_3 \), IBr\(_2 \), AuI\(_3 \), BF\(_4 \) etc.) were prepared by chemical or electrochemical procedures (see for example [4]). These salts were found to be conducting solids. Details on the physical properties of the \(\pi \)-donors 1-2–1-6 and of their CTC and CRS will be reported elsewhere.

We thank Dr. C. W. Mayer and J. S. Zambounis for recording mass spectra.

Table I. Preparative, analytical\(^a \) and UV-spectral data\(^b \) of 1-2–1-6.

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>Yield (%)</th>
<th>m. p. (°C)</th>
<th>C</th>
<th>H</th>
<th>S</th>
<th>(\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>7.0</td>
<td>175</td>
<td>46.05 (46.15)</td>
<td>2.48 (2.56)</td>
<td>42.60 (41.03)</td>
<td>306</td>
</tr>
<tr>
<td>1-3</td>
<td>5.6</td>
<td>206</td>
<td>42.15 (42.17)</td>
<td>2.16 (2.24)</td>
<td>41.29 (40.90)</td>
<td>287</td>
</tr>
<tr>
<td>1-4</td>
<td>3.9</td>
<td>171</td>
<td>31.87 (31.95)</td>
<td>1.67 (1.78)</td>
<td>56.87 (56.81)</td>
<td>325</td>
</tr>
<tr>
<td>1-5</td>
<td>4.5</td>
<td>194</td>
<td>34.14 (34.29)</td>
<td>1.76 (1.70)</td>
<td>54.67 (54.86)</td>
<td>323</td>
</tr>
<tr>
<td>1-6</td>
<td><1</td>
<td>218</td>
<td>25.21 (25.00)</td>
<td>1.27 (1.39)</td>
<td>29.43 (29.63)</td>
<td>312–320</td>
</tr>
</tbody>
</table>

\(^a \) Analysis (%), calculated values are given in parentheses; \(^b \) position of the strongest band in the UV-visible spectral range.

