New Dehydrothymol Derivative from *Iphiona mucronata*

Mohamed Metwally

Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt

Z. Naturforsch. 40b, 1597–1598 (1985); received June 24, 1985

Dehydrothymol Derivative, *Iphiona mucronata*

A reinvestigation of *Iphiona mucronata* gave in addition to the known compound a new dehydro­thymol derivative. Its structure was determined by spectroscopic methods.

Introduction

The genus *Iphiona* (Compositae, tribe Inuleae) is placed in the subtribe Inulinae [1]. The Inuleae include a selection of plants with medicinal activity [1]. In spite of the practical interest in plants of the Inuleae, the chemistry of the tribe has not been extensively explored [1]. In continuation to our study on the Egyptian Compositae we have now studied the constituents of *Iphiona mucronata*, and the results are discussed in this paper.

Results and Discussion

A reinvestigation of *Iphiona mucronata* afforded in addition to the known epoxythymol derivative 1, which isolated by us [2], a new dehydrothymol 2. The structure of 2 could easily be deduced from the spectral data. The molecular formula was $C_{16}H_{22}O_3$, while the 1H NMR spectrum (400 MHz, cf. Experimental) indicated the presence of an isopropenyl group 2.03 t (3H, 5.11 dq and 4.98 dq), a methoxy group at $\delta = 3.81$ and a methyl group at $\delta = 2.17$. The relative position of the different groups followed from the chemical shifts of the aromatic protons. Further evidence for structure 2 was gained from the IR and mass spectral data. The IR spectrum showed a clear and sharp band at 1740 cm$^{-1}$ (CO ester) and 1630 cm$^{-1}$ ($\text{C} = \text{C}$). Compound 2 gave molecular ion $[M]^+$ at m/z 262 corresponding to $C_{16}H_{22}O_3$. The fragment m/z 178, produced from $[M]^+$ after removal of a ketene followed by ring closure and rearrangement. The base peak at m/z 59 was obviously formed due to loss of C_6H_6O from the fragment m/z 178 (cf. Chart 1).

The structure of 1 was obtained from the 1H NMR, MS and IR spectral data with authentic spectra.

Again the results on *Iphiona* do not show clear relationships to other genera, and highly oxygenated compounds seem to be characteristic for the genus but further investigation are needed.

Experimental

The air dried plant material, collected in March 1984, near Giza, Egypt, was extracted with ether, petroleum ether and methanol (1:1:1). The extract of the aerial parts (150 g) was first treated with methanol to remove long chain hydrocarbons and then partially separated by CC (SiO$_2$) with petroleum ether and increasing amounts of ether and finally ether, methanol (10:1). The fraction obtained with 10% ether on repeated TLC (15% ether) afforded 5 mg 2. The fraction obtained with 50% and 100% ether were combined and afforded 25 mg 1.
Dehydrothymol derivative (2)

Colourless oil, IR $\nu_{\text{max}}^{\text{CO}}$ cm$^{-1}$ 1740 (CO ester), and 1630 (C=C). MS m/z (rel. int.): 262.156 [M]$^+$ (1) (calc. for $C_{16}H_{12}O_3$: 262.156), 178 [262-ketene]$^-$ (5), 59 [178-$C_8H_5O]^+$ (100). 1H NMR (CDCl$_3$, 400 MHz) δ: 6.67 s (H-3), 6.76 s (H-6), 5.11 dq (H-8, J [Hz] = 1), 4.98 br s (H-8), 2.03 br s (H-9), 4-Oival (1.02 d, J [Hz] = 7, 2.36 d, J [Hz] = 7 and 2.21 m), 2.17 s (Me-aromatic) and 3.81 s (OMe).

We thank Prof. Dr. A. Fayed, Department of Botany, Faculty of Science, Assiut University, Egypt, and Prof. Dr. F. Bohlmann, TU Berlin, West Germany, for the spectral measurements.
