Electronegativity Order of Group IV Elements: Evidence from Molecular Geometry

Istvan Hargittai
Department of Structural Studies, Research Laboratory for Inorganic Chemistry, Hungarian Academy of Sciences, P. O. Box 117, H-1431 Budapest and

Claus Bliefert
Fachbereich Chemieingenieurwesen, Fachhochschule Münster/Abteilung Steinfurt, Stegerwaldstraße 39, D-4430 Steinfurt 1

Z. Naturforsch. 38b, 1304–1305 (1983); received June 22, 1983

Electronegativities, Group IV Elements

Electronegativities for Group IV elements A have been estimated from the bond lengths observed in AX2 and AX4 molecules (X = F, Cl, Br). The order of electronegativities established by this method is Xc > XGe > Xsn > Xsi.

The molecular geometries of several dihalocarbene analogs AX2 have been recently determined. The parameters are cited in Table I. It was thought to be of interest to estimate electronegativities for group IV elements from this newly available set of geometrical data. The utility of using geometrical data in estimating electronegativities was recently demonstrated for sulfone [9] and sulfonyl chloride [10] molecules. In particular, the group electronegativities of some RSO2 groups have been estimated [10] from the S–Cl bond lengths of sulfonyl chlorides using the Schomaker-Stevenson equation [11] and parameters from Pauling [12] in addition to the experimentally determined S–Cl bond lengths [13].

In the present case an expression for the bond length suggested more recently by Robiette [14] and used successfully by Glidewell [15] and Hargittai [13] has been chosen,

\[r(A-X) = r_A + r_X - c \chi_X - \chi_A^2, \]

where \(r_A \) and \(r_X \) are covalent radii from Glidewell [15],

\[
\begin{align*}
 r_C & = 76.7 \text{ pm} \\
 r_F & = 70.9 \text{ pm} \\
 r_{Si} & = 116.9 \\
 r_{Cl} & = 99.4 \\
 r_{Ge} & = 120.2 \\
 r_{Br} & = 114.2 \\
 r_{Sn} & = 138.6
\end{align*}
\]

\(\chi_X \) are the halogen electronegativities from Pauling [12], viz. 4.0, 3.0, and 2.8 for fluorine, chlorine, and bromine, respectively, and c = 7.3 pm.

Using the A-X bond lengths from Table I, the following electronegativities were calculated (here averages of available results are given):

\[
\begin{align*}
 \chi_{C} & = 2.6, \quad \chi_{Si} = 1.9, \quad \chi_{Ge} = 2.5, \quad \chi_{Sn} = 2.3.
\end{align*}
\]

The internal consistency of the \(\chi_X \) values is shown in Fig. 1.

<table>
<thead>
<tr>
<th>A</th>
<th>X</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>r, pm</td>
<td>130.35(1)</td>
<td>104.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\angle)</td>
<td>100.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>r, pm</td>
<td>159.01(1)</td>
<td>208.3(4)</td>
<td>224.3(5)</td>
</tr>
<tr>
<td></td>
<td>(\angle)</td>
<td>102.8(6)</td>
<td>102.7(3)</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>r, pm</td>
<td>173.21(1)</td>
<td>218.6(4)</td>
<td>233.7(13)</td>
</tr>
<tr>
<td></td>
<td>(\angle)</td>
<td>97.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>r, pm</td>
<td>234.6(7)</td>
<td>250*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\angle)</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Preliminary result. Private communication from Dr. Gy. Schultz, 1982.

Reprint requests to Prof. Dr. I. Hargittai or Prof. Dr. C. Bliefert.

0340-5067/83/1000-1304/$ 01.00/0

Fig. 1. Electronegativities of group IV elements A as estimated from the bond lengths of their dihalide molecules AX2. (The dashed line indicates that the structure of SnF2 is not yet known and that the tin electronegativity in SnF2 was estimated on the basis of the other data.)
The most important observation here is that the silicon electronegativity value is smaller than that of germanium. The various uncertainties involved in this approach are not thought to have a serious influence on this result. The most important potential sources of error include the limited number of reference molecules considered, the approximate character of the equation, and the values chosen for covalent radii and reference electronegativities. The actual magnitude of the uncertainties is difficult to estimate.

There is, of course, the additional uncertainty in the experimental bond lengths, but in this case the effect is easy to estimate. A change in \(r(A-X) \) of 0.5 pm would introduce a change of almost 0.1 in the calculated electronegativities \(\chi_A \).

Similar calculations were also performed on the basis of the available bond lengths of AX4 molecules, where the data are of widely varying accuracy. The bond length parameters taken were CF4 131.7 pm [16], CC14 176.6 [17], SiF4 155.3 [18], SiCl4 202.0 [19], GeF4 167 [20], GeCl4 211.3 [17], GeBr4 227.2 [21], and SnCl4 228.1 [22]. The resulting estimated \(\chi_A \) values are 2.6, 1.7, 2.0 and 1.8 for A = C, Si, Ge, and Sn, respectively. Thus, the data for both series of molecules, AX2 and AX4, yield electronegativities decreasing in the same order:

\[
\chi_C > \chi_Ge > \chi_Sn > \chi_Si
\]

This order is in agreement with information collected on the electronegativities of group IV elements from other chemical and physical evidence as summarized by Moody and Thomas [23] but differs considerably from that cited in the Pauling scale, where \(\chi_C \) is 2.5 while \(\chi_A \) is 1.8 for the three elements silicon, germanium and tin.

The present results can be utilized in estimating bond lengths in dihalocarbene analogs whose structures have not yet been determined. Thus, for example, the Sn–F bond length in SnF2 is predicted to be 186 pm.

[16] As a matter of fact using the original Schomaker-Stevenson formula and the covalent radii communicated by Pauling [12] resulted in the same order of electronegativities.