Thioamid → Isothiocyanat-Umwandlung

Thioamides → Isothiocyanate Conversion

M. Bahadir*, S. Nitz, H. Parlar und F. Körte
Institut für Ökologische Chemie
der Gesellschaft für Strahlen- und
Umweltforschung mbH München,
Schulstraße 10, D-8050 Freising-Attaching
und
Institut für Chemie der Technischen Universität
München, D-8050 Freising-Weihenstephan

Z. Naturforsch. 34b, 768–769 (1979);
eingegangen am 24. Oktober 1978

Chlorinated Thiobenzamides,
Oxydation Reactions, 1,2,4-Thiadiazoles

Oxydation reactions of some chlorinated thio-
amides (1a–e) with nitrous acid was investigated. Nitriles (2a–e) and 1,2,4-thiadiazoles (3a–e) were isolated as major conversion products. Surprisingly 2,6-dichlorothiobenzamide (le) re-
acted to phenylisothiocyanate (4e) under the same conditions.

Während die Umsetzung von Benzamiden zu Iso-
cyanaten schon mehrfach beschrieben wurde [1], ist die direkte Reaktion eines Thiobenzamids in das entsprechende Isothiocyanat bisher nicht beobach-
tet worden. Wir haben nun im Rahmen unserer Un-

Experimental Teil

1 g des betreffenden Thiobenzamids wird in 30 ml konzentrierter Salzsäure gelöst und mit 0,5 g Na-
triumnitrit in 10 ml Wasser tropfenweise versetzt. Nach zweistündigem Rühren wird mit 100 ml Was-
ser verdünnt und zweimal mit Chloroform extrahiert. Die Isolierung der Reaktionsprodukte erfolgt durch Säulenchromatographie (Kieselgel 0,06–0,20 mm, Lösungsmittel: n-Hexan). GC: 3% SE 30, t = 200 °C (30 ml/min).

Tab. I. Physikalische Daten der Verbindungen 3a–d und 4e.

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Schmp. [°C]</th>
<th>Rf [min]</th>
<th>Rf [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>86</td>
<td>5,4</td>
<td>0,53</td>
</tr>
<tr>
<td>3b</td>
<td>86</td>
<td>17,6</td>
<td>0,49</td>
</tr>
<tr>
<td>3c</td>
<td>122</td>
<td>18,0</td>
<td>0,52</td>
</tr>
<tr>
<td>3d</td>
<td>163</td>
<td>19,2</td>
<td>0,56</td>
</tr>
<tr>
<td>4e</td>
<td>44</td>
<td>10,0b</td>
<td>0,47</td>
</tr>
</tbody>
</table>

[a] n-Hexan/Essigester 2:1,
[b] Säulentemperatur 120 °C, 3% OV 101 (30 ml/min).

* Sonderdruckanforderungen an M. Bahadir, 040–5087/79/0500–0768/$0100/0
Tab. II. Spektroskopische Daten der Verbindungen 3a-d und 4e.

<table>
<thead>
<tr>
<th>Verb.</th>
<th>MS m/e (rel. Int. %)</th>
<th>IR KBr [cm⁻¹]</th>
<th>¹H-NMR δ [ppm]</th>
<th>¹³C-NMR δ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>238 (28)</td>
<td>3030, 2330, 1495, 1465, 1430, 1400, 1320</td>
<td>2H (8,38, m) (Ph) 127,56, 128,48, 128,68, 129,27, 130,32, 130,92, 131,84, 133,11</td>
<td>135 (100) 103 (31)</td>
</tr>
<tr>
<td>3b</td>
<td>306 (22)</td>
<td>3050, 2330, 1580, 1480, 1450, 1420, 1395, 1300</td>
<td>1H (8,63, m) (Ph) 126,75, 127,47, 129,69, 130,42, 130,73, 130,93, 132,09, 132,31, 133,44, 133,84</td>
<td>169 (100) 137 (22)</td>
</tr>
<tr>
<td>3c</td>
<td>306 (40)</td>
<td>3050, 2330, 1590, 1570, 1490, 1460, 1430, 1390, 1300</td>
<td>1H (8,23, m) 130,49, 131,91, 132,11, 134,31, 134,85</td>
<td>126,75, 127,47, 129,69, 130,42, 130,73, 130,93, 132,09, 132,31, 133,44, 133,84</td>
</tr>
<tr>
<td>3d</td>
<td>306 (34)</td>
<td>3040, 2330, 1585, 1460, 1410, 1390, 1300</td>
<td>2H (8,26, d) (Ph) 128,70, 129,00, 129,17, 129,72, 131,32,</td>
<td>169 (100) 137 (31)</td>
</tr>
<tr>
<td>4e</td>
<td>203 (100)</td>
<td>3060, 2340, 2100, 2030, 1540, 1420</td>
<td>3H (7,25, m) 127,35, 128,25, 132,33</td>
<td>171 (11)</td>
</tr>
</tbody>
</table>