6H-Dipyrido[2,1-b:1',2'-e]-1,3,5-selenadiazinium
Dibromide: A Dipyrido Analogue of Selenaxanthene

HAMISH G. GRANT and LINDSAY A. SUMMERS
Department of Chemistry, The University of Newcastle
2308, New South Wales, Australia
(Z. Naturforsch. 33 b, 118-119 [1978]; received June 13, 1977)

2,2'-Selenodipyridine, 6H-Dipyrido[2,1-b:1',2'-e]-1,3,5-selenadiazinium Dibromide

2,2'-Selenodipyridine on reaction with dibromomethane affords the new polycyclic system, 6H-dipyrido[2,1-b:1',2'-e]-1,3,5-selenadiazinium dibromide.

Reaction of 2,2'-thiodipyridine with dibromomethane results in the formation of the ring system (1) which contains the unusual feature of a methylene group flanked by two quaternary pyridine nitrogen atoms. In contrast, reaction of 2,2'-bipyridyl, di-(2-pyridyl)methane, 2,2'-iminodipyridine and 2,2'-oxydipyridine with dibromomethane does not result in the formation of the corresponding diquaternary ring system. We have now succeeded, however, in preparing the selenium analogue of (1), 6H-dipyrido[2,1-b:1',2'-e]-1,3,5-selenadiazinium dibromide (2).

2,2'-Selenodipyridine (3), which has not been reported hitherto, was prepared by reacting equimolar portions of 2-selenopyridine and 2-bromopyridine in boiling benzene in a nitrogen atmosphere. The precipitate which formed in the reaction mixture consisted of the dihydrobromide (4) of 3. 2,2'-Selenodipyridine (3) was obtained by evaporation of the benzene solution and a further quantity was forthcoming after neutralisation of 4. 2,2'-Selenodipyridine is a yellow oil.

Reaction of 2,2'-selenodipyridine (3) with boiling dibromomethane resulted in the formation of 6H-dipyrido[2,1-b:1',2'-e]-1,3,5-selenadiazinium dibromide (2). The structure was confirmed by elemental analyses (all bromine ionic) and by the NMR spectrum in water which consisted of a singlet at δ = 7.22 ppm assigned to the methylene protons at position 6, a multiplet at 8.10-8.80 due to the protons in positions 1, 2, 3, 9, 10, 11 and a doublet at 9.46-9.56 due to the protons in positions 4 and 8 with an integral area ratio of 1:3:1. The signal due to the methylene protons slowly diminished in intensity when the spectrum was run in D2O due to deuterium exchange. The salt 2 is a reactive compound and is readily broken down by alkali.

Experimental

Microanalyses, UV and NMR spectra were obtained as described previously.

2,2'-Selenodipyridine (3)

2-Selenopyridine (6.4 g) and 2-bromopyridine (6.4 g) were refluxed in benzene (25 ml) for 2.5 h in an atmosphere of nitrogen. The yellow-orange precipitate (7.1 g) was filtered off and crystallised twice from methanol containing a little water to afford the dihydrobromide (4) of 2,2'-selenodipyridine as yellow crystals of the hemihydrate, m.p. 224-226 °C (decomp.).

C16H10Br2NaSe • 1/2 H2O
Calcd C 29.6 H 2.7 N 6.9,
Found C 29.3 H 2.4 N 6.6.

Evaporation of the benzene solution afforded an oil (5.15 g), which on distillation afforded 2,2'-selenodipyridine as a yellow oil, b.p. 135-140 °C/0.5 mm.

C16H9NaSe
Calcd C 51.1 H 3.4 N 11.9,
Found C 50.8 H 3.3 N 11.8.

UV spectrum (C6H6OH): λmax 246, 289, (log ε 3.80, 3.77) [nm].

Neutralisation of the solid dihydrobromide (4) with aqueous potassium carbonate afforded a further quantity of 2,2'-selenodipyridine. The total yield of 3 was 80%.

6H-Dipyrido[2,1-b:1',2'-e]-1,3,5-selenadiazinium Dibromide (2)

2,2'-Selenodipyridine (2.5 g) was refluxed with dibromomethane (18 ml) for 8 h in an atmosphere of nitrogen. The brown solid which was obtained was digested in methanol to give a yellow solid. This solid was crystallised from methanol with a trace

Requests for reprints should be sent to Prof. Dr. L. A. Summers, Department of Chemistry, The University of Newcastle, 2308, New South Wales, Australia.
of water to give yellow crystals of the hemihydrate, m.p. 263–264 °C (decomp.). Yield (65%).

C\textsubscript{11}H\textsubscript{16}Br\textsubscript{2}N\textsubscript{2}Se
Calcd C 31.6 H 2.65 N 6.7 Br 38.2.
Found C 31.6 H 2.6 N 7.0 Br (total) 37.8.

NMR spectrum (H\textsubscript{2}O): δ = 7.22 (s, 2H, CH\textsubscript{2}); 8.10–8.80 (m, 6H, protons at 1, 2, 3, 9, 10, 11); 9.46–9.56 (d, 2H, protons at 4, 8) [ppm].

UV spectrum (dilute aqueous HBr): λ\textsubscript{max}; 233, 277, 377 (log ε 4.22, 4.04, 3.58) [nm].

3 L. A. SUMMERS, Tetrahedron 24, 2697 [1968].