Crystal-Field Energy Levels of Trivalent Erbium Ion in Cubic Symmetry

Said Laachir^a, Mohamed Moussetad^b, Rahma Adhiri^b, and Ahmed Fahli^a

^a UFR S.I.R.I, Université Hassan II-Mohammedia Faculté des Sciences, Ben M'sik, B.P 7955 Casablanca, Morocco

^b L.P.S.C.M, Université Hassan II-Mohammedia Faculté des Sciences, Ben M'sik, B.P 7955 Casablanca, Morocco

Reprint requests to S. L.; E-mail: saidlaachir@yahoo.fr

Z. Naturforsch. **66a**, 457–460 (2011); received December 16, 2010

This paper describes a scheme for the numerical calculation of crystal field (CF) energy levels and at the same time wave functions of the trivalent erbium ion in cubic symmetry. The 16-fold degenerate term ${}^{4}I_{15/2}$ of the trivalent erbium ion splits into three Stark quartets Γ_{8} and two different doublets Γ_{6} and Γ_{7} (irreducible representations). The CF energy matrix of the Er^{3+} ion has been constructed and calculated from the complete diagonalization method, and the corresponding wave functions were used to calculate the ground state g-values. This method is outlined and illustrated by the examples of the Si:Er for comparison. The calculated g-factors are g = 6.8 and g = 6.0 for Γ_{6} and Γ_{7} , respectively.

Key words: Crystal Field; Energy Level; Erbium; Rare Earth.