Equilibrium Geometries, Stabilities, and Electronic Properties of the Bimetallic Ag₂-doped Si_n (n = 1-11) Clusters: A Density-Functional Investigation

Ya-Ru Zhao^a, Xiao-Yu Kuang^{a,b}, Su-Juan Wang^a, Yan-Fang Li^a, and Peng Lu^a

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ^b International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China

Reprint requests to X.-Y. K.; E-mail: scu_kxy@163.com

Z. Naturforsch. 66a, 353-362 (2011); received May 10, 2010 / revised September 9, 2010

An ab initio method based on the density functional theory has been employed to investigate the behaviours of the bimetallic Ag₂-doped silicon clusters at a size of n = 1 - 11. The possible geometrical configurations, growth-pattern behaviours, stabilities, energy gaps, and electronic properties are presented and discussed. The optimized geometries reveal that the silicon atom surface-capped and silver atom substituted 3D structures are dominant growth patterns. The calculated averaged binding energy, fragmentation energy, and the second-order difference of energy manifest that the most stable structures of Ag₂Si_n (n = 1 - 11) clusters are Ag₂Si₂ and Ag₂Si₅ isomers, which is in qualitative agreement with the AgSi_n clusters. In addition, the gap between highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) exhibits that the Ag₂Si₃ and Ag₂Si₅ isomers have dramatically enhanced chemical stability. Natural population analysis shows that the charge-transfer phenomena are coincidence with the AgSi_n clusters but different from Mo₂Si_n systems. Furthermore, the dipole moments of stable Ag₂Si_n (n = 1 - 11) display a pronounced odd-even oscillation with the number of silicon atoms.

Key words: Ag-Si Cluster; Geometric Configuration; Density Function Method.