On the Fractional-Order Logistic Equation with Two Different Delays

Ahmed M. A. El-Sayed^a, Hala A. A. El-Saka^b, and Esam M. El-Maghrabi^c

^a Faculty of Science, Alexandria University, Alexandria, Egypt
^b Department of Mathematics, Damietta Faculty of Science, 34517, New Damietta, Egypt
^c Faculty of Science, Benha University, Benha 13518, Egypt

Reprint requests to H. A. A. E.-S.; E-mail: halaelsaka@yahoo.com

Z. Naturforsch. 66a, 223 - 227 (2011); received February 25, 2010 / revised July 18, 2010

The fractional-order logistic equation with the two different delays $r_1, r_2 > 0$, $D^{\alpha}x(t) = \rho x(t - r_1)[1 - x(t - r_2)]$, t > 0 and $\rho > 0$, with the initial data $x(t) = x_0, t \le 0$ are considered. The existence of a unique uniformly stable solution is studied and the Adams-type predictor-corrector method is applied to obtain the numerical solution.

Key words: Logistic Delay Equation; Fractional-Order Differential Equations; Stability; Existence; Uniqueness; Numerical Solution; Predictor-Corrector Method.