A Theoretical Study on the Spin-Hamiltonian Parameters for Samarium(III) Ion in Potassium Yttrium Tungstate Crystal

Wei-Qing Yang^{a, b}, Wen-Chen Zheng^b, Ping Su^b, and Hong-Gang Liu^b

^a Department of Optics and Electronics, Chengdu University of Information Technology, Chengdu 610225, P.R. China

^b Department of Material Science, Sichuan University, Chengdu 610064, P.R. China

Reprint requests to W.-Q. Y.; E-mail: cdywq@cuit.edu.cn

Z. Naturforsch. 66a, 139-142 (2011); received March 5, 2010

The nine spin-Hamiltonian (SH) parameters (g-factors g_i and hyperfine structure constants ${}^{147}A_i$ and ${}^{149}A_i$ for ${}^{147}\text{Sm}^{3+}$ and ${}^{149}\text{Sm}^{3+}$ isotopes, where i = x, y, z) for the Samarium(III) ion in monoclinic potassium yttrium tungstate [KY(WO₄)₂] crystal are calculated within the rhombic symmetry approximation from a diagonalization of energy matrix method. Differing from the conventional diagonalization method used in the calculation of crystal-field levels, in the present method, we attach the Zeeman (or magnetic) and hyperfine interaction terms to the conventional Hamiltonian and construct the 66 × 66 energy matrix for $4f^5$ ions in rhombic crystal field and under an external magnetic field by considering all the ground-term multiplets $4H_J$. The calculated results are in reasonable agreement with the experimental values.

Key words: Electron Paramagnetic Resonance (EPR); Crystal Field Theory; Diagonalization Method; KY(WO₄)₂; Sm³⁺.