Exp-Function Method for N-Soliton Solutions of Nonlinear Differential-Difference Equations

Sheng Zhanga,b and Hong-Qing Zhanga

a School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P.R. China
b Department of Mathematics, Bohai University, Jinzhou 121013, P. R. China

Reprint requests to S. Z.; E-mail: dr.szhang@yahoo.com.cn

Z. Naturforsch. 65a, 924–934 (2010); received June 16, 2009 / revised January 27, 2010

In this paper, the exp-function method is generalized to construct N-soliton solutions of nonlinear differential-difference equations. With the aid of symbolic computation, we choose the Toda lattice to illustrate the validity and advantages of the generalized work. As a result, 1-soliton, 2-soliton, and 3-soliton solutions are obtained, from which the uniform formula of N-soliton solutions is derived. It is shown that the exp-function method may provide us with a straightforward and effective mathematical tool for generating N-soliton solutions of nonlinear differential-difference equations in mathematical physics.

Key words: Nonlinear Differential-Difference Equations; Exp-Function Method; N-Soliton Solutions.