Nonlinear Stretching Flow with Thermal Radiation

Tasawar Hayat\textsuperscript{a,b}, Rabia Noureen\textsuperscript{a}, and Tariq Javed\textsuperscript{c}

\textsuperscript{a} Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
\textsuperscript{b} Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
\textsuperscript{c} Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan

Reprint requests to T. H.; Fax: +92 51 2601171. E-mail: pensy.t@yahoo.com

Z. Naturforsch. \textbf{65a}, 761 – 770 (2010); received May 4, 2009

This work concerns with the radiation effects on rotating boundary layer flow of an electrically conducting incompressible fluid over a nonlinear stretching surface. The viscous fluid fills the porous space. The flow is permeated by a constant magnetic field applied in the transverse direction. Two types of temperatures are prescribed to the surface. The resulting problems of velocity and temperature are obtained using the homotopy analysis method (HAM). Convergence of the developed series solutions is carefully checked. Graphical results of the velocity and temperature fields for various values of the parameters of the problems are presented and discussed.

\textit{Key words}: Nonlinear Stretching; Radiation Effect; Porous Space; Series Solutions.