Ferromagnetic and Optical Properties of Partially Cu-Doped ZnO Films Fan-Yong Ran^a, Masaki Tanemura^a, Yasuhiko Hayashi^a, Norihiro Ide^a, Masao Imaoka^a, Tun-Seng Herng^b, and Shu-Ping Lau^b ^a Department of Environmental Technology, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan 466-8555 ^b School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore Reprint requests to F.-Y. R.; E-mail: fyran80@gmail.com Z. Naturforsch. **64a**, 765 – 768 (2009); received October 7, 2008 / revised February 18, 2009 Wurtzite structure ZnO films (3 × 3 mm²) with a partial-area Cu doping were successfully prepared using a micro-area Ar^+ -ion beam (\sim 380 μm in diameter) and a simultaneous Cu supply at room temperature. A Cu₂O phase was formed in the ZnO films by Cu doping. The partially Cu-doped ZnO films exhibited room-temperature ferromagnetism (RTFM) with a saturation magnetization of 1.6×10^{-5} emu and a coercive field of 40 Oe. Since Zn, Cu, and their compounds are not ferromagnetic, the observed RTFM is attributed to the intrinsic property of Cu-doped ZnO films. As confirmed by the low temperature photoluminescence (PL) spectra, no serious optical damage was recognized in the region without Ar^+ -ion irradiation. Thus, it was believed that the micro-area Ar^+ -ion irradiation with a simultaneous Cu supply was promising to integrate the magnetic and optical properties of ZnO-based materials. *Key words:* Cu-Doped ZnO Films; Ar⁺-Ion Beam; Room-Temperature Ferromagnetism. *PACS numbers:* 75.50.Pp, 79.20.Rf, 68.55.Ln, 78.55.Et