Wurtzite structure ZnO films (3×3 mm2) with a partial-area Cu doping were successfully prepared using a micro-area Ar$^+$-ion beam (~ 380 µm in diameter) and a simultaneous Cu supply at room temperature. A Cu$_2$O phase was formed in the ZnO films by Cu doping. The partially Cu-doped ZnO films exhibited room-temperature ferromagnetism (RTFM) with a saturation magnetization of 1.6×10^{-5} emu and a coercive field of 40 Oe. Since Zn, Cu, and their compounds are not ferromagnetic, the observed RTFM is attributed to the intrinsic property of Cu-doped ZnO films. As confirmed by the low temperature photoluminescence (PL) spectra, no serious optical damage was recognized in the region without Ar$^+$-ion irradiation. Thus, it was believed that the micro-area Ar$^+$-ion irradiation with a simultaneous Cu supply was promising to integrate the magnetic and optical properties of ZnO-based materials.

Key words: Cu-Doped ZnO Films; Ar$^+$-Ion Beam; Room-Temperature Ferromagnetism.
PACS numbers: 75.50.Pp, 79.20.Rf, 68.55.Ln, 78.55.Et