Effects of Concentration, Temperature and Hydrostatic Pressure on the Local Lattice Structure of Ni²⁺ Doped $Zn(BF_4)_2 \cdot 6H_2O$ Crystal

Ming-Liang Gao^a, Xiao-Yu Kuang^{a,b}, Hui-Fang Li^a, and Huai-Qian Wang^a

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ^b International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China

Reprint requests to X.-Y. K.; E-mail: scu_kuang@163.com

Z. Naturforsch. 64a, 511-517 (2009); received October 9, 2008 / revised December 29, 2008

A theoretical method for studying the inter-relationship between electronic and molecular structure is presented by means of complete energy matrices. As an application, the effects of temperature, concentration and hydrostatic pressure on the local structures of Ni^{2+} doped $Zn(BF_4)_2 \cdot 6H_2O$ crystal have been studied. Our results show that the local lattice structures of $[Ni(H_2O)_6]^{2+}$ coordination complex have expansion distortions as the temperature rises. Meanwhile, we find that the local structure parameter θ becomes smaller with the increasing concentration of Ni^{2+} ions doped in $Zn(BF_4)_2 \cdot 6H_2O$ crystal. Furthermore, the pressure dependence of θ and anisotropic g-factors are discussed and the relationship between zero-field splitting parameter D and Δg is determined.

Key words: Local Structure; Zn(BF₄)₂ · 6H₂O:Ni²⁺ System; Complete Energy Matrices.