EPR Spectra of Some Cu$^{2+}$-Doped Metal Carbonates and Disorder Phase Transition in K$_3$H(CO$_3$)$_2$

Dilek Demir, Fevzi Köksal, Canan Kazak, and Rahmi Köseoğlu

Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey

Reprint requests to F. K.; E-mail: fkoksal@omu.edu.tr

Z. Naturforsch. 64a, 123 – 126 (2009); received December 3, 2007 / revised June 6, 2008

Cu$^{2+}$-doped K$_3$H(CO$_3$)$_2$, Rb$_2$CO$_3$, and Rb$_2$KH(CO$_3$)$_2$ single crystals were investigated by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectrum of K$_3$H(CO$_3$)$_2$ indicates two different sites for Cu$^{2+}$ at room and at low temperatures. But the signals for the two sites overlap at 318 K which is attributed to a disorder phase transition. Each of the other compounds exhibits one site. The Cu$^{2+}$ ion seems to substitute the K$^+$ and Rb$^+$ ions and the charge compensations are fulfilled by the proton vacancies in K$_3$H(CO$_3$)$_2$, and another K$^+$ and Rb$^+$ in the other compounds. The spin Hamiltonian parameters g and A for each compound are determined and discussed.

Key words: Electron Paramagnetic Resonance; Carbonates; Disorder Phase Transition; Cu$^{2+}$ Doping.