Nonthermal and Plasmon Effects on Elastic Electron-Ion Collisions in Hot Quantum Lorentzian Plasmas

Hwa-Min Kima and Young-Dae Jungb

a Department of Electronics Engineering, Catholic University of Daegu, Hayang, Gyongsan, Gyungbuk 712-702, South Korea
b Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea

Reprint requests to Y.-D. J.; E-mail: ydjung@hanyang.ac.kr

The nonthermal and plasmon effects on elastic electron-ion collisions are investigated in hot quantum Lorentzian plasmas. The modified interaction model taking into account the nonthermal screening and plasmon effects is employed to represent the electron-ion interaction potential in hot quantum Lorentzian plasmas. The eikonal phase and differential collision cross-section are obtained as functions of the impact parameter, collision energy, spectral index, and plasma parameters by using the second-order eikonal analysis. It is shown that the plasmon effect suppresses the eikonal phase and collision cross-section for $0 < \beta \equiv \hbar \omega_0 / k_B T < 0.6$ and, however, enhances it for $0.6 < \beta < 1$, where ω_0 is the plasma frequency and T is the plasma temperature. It is also shown that the nonthermal character of the quantum Lorentzian plasma suppresses the elastic electron-ion collision cross-section.

\textit{Key words:} Nonthermal Effects; Plasmon Effects; Quantum Lorentzian Plasmas.