Electrodeposition of Zinc from Binary ZnCl$_2$-DMSO$_2$ Molten Electrolyte at Room Temperature

Chao-Chen Yanga and Min-Fong Shub

a Department of Chemical Engineering, National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan, R.O.C.
b Graduate School of Engineering Science and Technology (Doctoral Program), National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan, R.O.C.

Reprint requests to C.-C. Y.; Fax: 886-5-531-2071; E-mail: prof.ccyang@gmail.com

Z. Naturforsch. 62a, 754–760 (2007); received April 27, 2007

The electrochemical behaviour of zinc on copper, platinum, and tungsten working electrodes was investigated in a binary ZnCl$_2$-DMSO$_2$ room temperature molten salt electrolyte in the temperature range of 60–80 °C. Various over-potentials, -0.1, -0.2, -0.3, -0.4, and -0.5 V, were chosen as deposition potentials. The nucleation/growth of zinc changed from progressive to instantaneous if the over-potentials increased from low to high level. The surface morphology and crystal structure of the deposited layer were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Moreover, larger grain size and hexagonal close packing of the zinc layer at -0.5 V were observed by transmission electron microscopy (TEM) with electron diffraction mapping.

Key words: Room Temperature Molten Salt; ZnCl$_2$-DMSO$_2$ Electrolyte; Progressive Nucleation; Instantaneous Nucleation.