Electronic absorption spectra of trivalent praseodymium in various alkali chloride melts were precisely measured. The oscillator strength of the hypersensitive transition, $^3F_2 \leftarrow ^3H_4$, showed a clear decrease with increasing temperature. This temperature dependence was the inverse of reported cases for other trivalent lanthanoids. The Judd-Ofelt parameter was analysed, and the calculated oscillator strength showed quite good agreement with the experimentally obtained oscillator strength. However, the Ω_2 parameter, which is sensitive to the ligand environment change, showed a clear decrease with increasing temperature and negative values at high temperature. We found that the $^3P_0 \leftarrow ^3H_4$ transition and its shoulder peak are quite sensitive to the coordination circumstance change of the $[\text{PrCl}_6]^{3-}$ complex in molten chlorides. These intensities could be correlated with the octahedral symmetry of $[\text{PrCl}_6]^{3-}$.

Key words: Molten Salt; Praseodymium; Electronic Absorption Spectrometry; Judd-Ofelt Parameter Analysis.