Investigation of the EPR Parameters of a Trigonal Dy3+ Center in La\textsubscript{2}Mg\textsubscript{3}(NO\textsubscript{3})\textsubscript{12} · 24H\textsubscript{2}O Crystal

Hui-Ning Donga,b, Shao-Yi Wuc, and David J. Keebleb

a Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
b Division of Electronic Engineering and Physics, University of Dundee, Dundee DD1 4HN, UK
c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

Reprint requests to H.-N. D.; E-mail: donghn@163.com

Z. Naturforsch. 62\textbf{a}, 343–346 (2007); received February 27, 2007

The electron paramagnetic resonance parameters g_\parallel and g_\perp of Dy3+, and the hyperfine structure parameters A_\parallel and A_\perp of 161Dy3+ and 163Dy3+ in a La\textsubscript{2}Mg\textsubscript{3}(NO\textsubscript{3})\textsubscript{12} · 24H\textsubscript{2}O crystal are calculated by the perturbation formulas of the EPR parameters for a 4f9 ion in trigonal symmetry. In these formulas, the J-mixing among the 6H_J ($J = 15/2, 13/2$ and $11/2$) states via crystal-field interactions, the mixtures of the states with the same J-value via spin-orbit coupling interaction and the interactions between the lowest Kramers doublet Γ_γ and the same irreducible representations in the other 20 Kramers doublets Γ_X via the crystal-field and orbital angular momentum (or hyperfine structure) are all considered. The crystal-field parameters for the studied Dy3+ center are obtained with the superposition model. The calculated results are in good agreement with the observed values.

Key words: Crystal-Field Theory; Electron Paramagnetic Resonance; Dy3+; La\textsubscript{2}Mg\textsubscript{3}(NO\textsubscript{3})\textsubscript{12} · 24H\textsubscript{2}O.