EPR Theoretical Study of the Local Lattice Structure of Fe$^{3+}$ Doped in MgTiO$_3$ and LiTaO$_3$

Lei-Lei Pana, Xiao-Yu Kuanga, Guang-Dong Lia, and Hui Wanga

a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
b International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China

Reprint requests to X.-Y. K.; E-mail: panlei225@163.com

Z. Naturforsch. 62a, 101–106 (2007); received November 9, 2006

The EPR zero-field splittings of Fe$^{3+}$ doped in MgTiO$_3$ and LiTaO$_3$ are studied by diagonalizing the complete energy matrices of the electron-electron repulsion, ligand-field and spin-orbit coupling interactions for a d5 configuration ion in a trigonal ligand-field. It is shown that, when Fe$^{3+}$ is doped in a MgTiO$_3$ or LiTaO$_3$ crystal, the local lattice structure around the octahedral Fe$^{3+}$ center has an obvious distortion along the C$_3$ axis. By simulating the second- and fourth-order EPR parameters D and $(a - F)$ simultaneously, the local structure parameters of Fe$^{3+}$ doped in MgTiO$_3$ and LiTaO$_3$ crystals are determined, which reveal that Fe$^{3+}$ occupies both the Mg$^{2+}$ and Ti$^{4+}$ sites in the MgTiO$_3$:Fe$^{3+}$ system and occupies the Li$^+$ site rather than the Ta$^{5+}$ site in the LiTaO$_3$:Fe$^{3+}$ system. The results accord with the ENDOR and EPR experiments. – PACS numbers: 71.70.Gm; 75.30.Et; 71.70.Ch.

Key words: MgTiO$_3$:Fe$^{3+}$ and LiTaO$_3$:Fe$^{3+}$ Systems; Local Lattice Structure; EPR Spectrum.